As is well known, variational methods belong to the fundamental principles in mathematics and in mechanics. They are of interest not only from the theoretical but also from the numerical point of view. Indeed, when discretized the variational principles immediately provide numerical schemes for solving the underlying problem numerically. In particular, variational principles in various forms are videly used in order to establish Ritz — Galerkin schemes in finite element spaces.


Variational Inequality Variational Equation Posteriori Error Estimate Admissible Function Minimal Potential Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    COURANT, R. and HILBERT, D. : Methoden der mathematischen Physik. Springer-Verlag. Heidelberger Taschenbücher vol. 30 und 31.Google Scholar
  2. [2]
    TREFFTZ, E.: Ein Gegenstück zum Ritzschen Verfahren. Verhandl. d. 2. Internat. Kongreß f. techn. Mechanik. Zürich 1926, 131–138.Google Scholar
  3. [3]
    EKELAND, I. and TEMAM, R.: Convex analysis and variational problems. North-Holland Publ. Company, Amsterdam 1976.MATHGoogle Scholar
  4. [4]
    SEWELL, M.J.: Dual approximation principles and optimization in continuum mechanics. Phil. Trans. Roy. Soc. (London) A 265 (1969) 319–351.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    NOBLE, B., SEWELL, M.J.: On dual extremum principles in Applied Mathematics. J. Inst. Math. Appl. 9 (1972) 123–193.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    ROBINSON, P.D.: Complementary variational principles. In: Rall, L.B. (Ed.): Nonlinear functional analysis and applications. Academic Press 1971, pp. 509–576.Google Scholar
  7. [7]
    ODEN, J.T. and REDDY, J.N.: Variational methods in theoretical mechanics. Springer-Verlag Berlin, Heidelberg, New York 1976.CrossRefMATHGoogle Scholar
  8. [8]
    VELTE, W.: Direkte Methoden der Variationsrechnung. Teubner Studienbücher Mathematik. Teubner Verlag Stuttgart 1976.CrossRefMATHGoogle Scholar
  9. [9]
    NECAS, J.: Les méthodes directes en théorie des équations elliptiques. Masson et Cie., Paris, Academia, Prag 1967.MATHGoogle Scholar
  10. [10]
    DUVAUT, G. and LIONS, J.L.: Les inéquations an mécanique et en physique. Dunaud, Paris 1972.Google Scholar
  11. [11]
    KINDERLEHRER, D., STAMPACCHIA, G.: An introduction into variational inequalities and their applications. Academic Press 1980.Google Scholar
  12. [12]
    FICHERA, G.: Boundary value problems of elasticity with unilateral constraints. S. 392–424 in: Flügge, S. (Herausg.): Handbuch der Physik vol. VI a/2. Springer-Verlag Berlin, Heidelberg, New York.Google Scholar
  13. [13]
    LIONS, J.L., STAMPACCHIA, G.: Variational inequalities. Comm. Pure Appl. Math. 20 (1969) 493–519.CrossRefMathSciNetGoogle Scholar
  14. [14]
    HASLINGER, J.: Dual finite element analysis for an inequality of the 2nd order. Aplikace Matematiky 24 (1979), 118–132.MATHMathSciNetGoogle Scholar
  15. [15]
    BREZZI, F., HAGER, W.W., RAVIART, P.A.: Error estimates for the finite element solution of variational inequalities, part I. Primal theory. Part II. Mixed methods. Numer.Math. 28 (1977) 431–443. 31 (1978) 1–16.MathSciNetGoogle Scholar
  16. [16]
    RAVIART, P.A., THOMAS, J.M.: A mixed finite element method for 2nd oder elliptic problems. In: Mathematical aspects of the FEM (Rom, December 1975). Springer Lecture Notes in Math. vol. 606.Google Scholar
  17. [17]
    BREZZI, F.: On the existence, uniqueness and approximations of saddle-point problems arising from Lagrangian multipliers. R.A.I.R.O. Anal. Numer. 11 (1977) 209–216.Google Scholar

Additional references

  1. ALLEN, G.: Variational inequalities, complementary problems and duality theorems. J. f. Math. Anal. and Appl. 58 (1977) 1–10.CrossRefMATHGoogle Scholar
  2. ARTHURS, A.M.: Complementary variational principles. Oxford Math. Monographs, Oxford 1970.MATHGoogle Scholar
  3. COTTLE, R.V., GIANESSI, F., LIONS, J.-L.: Variational Inequalities and Complementary Problems. Theory and Applications. (Internat. School of Math., 19.–30. Juni 1978 in Erice Sicily) John Wiley and Sons 1980.Google Scholar
  4. FRAEIJS DE VEUBEKE, B.: Displacement and equilibrium models in the finite element method. S. 145–197 in: O.C. Zienkiewicz, G.S. Holister (Eds.) Stress Analysis, John Wiley 1965.Google Scholar
  5. FRAEIJS DE VEUBEEKE, B.: The duality principles of elastodynamics. Finite elements applications. S. 357–377 in: Lectures in finite element methods in continuum mechanics. Ed. by J.T. Oden, E.R. De Arantes e Oliveira The Univ. of Alabama Press, Huntsville 1973.Google Scholar
  6. GWINNER, J.: Nichtlineare Variationsgleichungen mit Anwendungen. Verlag Haag u. Herchen, Frankfurt/M. 1978Google Scholar
  7. GWINNER, J.: Bibliography on non-differentiable optimization and non-smooth analysis. [Vierhundert Referenzen.] J. of Computational and Applied Math. 7 (1981) 277–285.CrossRefMATHMathSciNetGoogle Scholar
  8. PRAGER, W., SYNGE, J.L.: Approximations in elasticity based on the concept of function space. Quart. Appl. Math. 5 (1947) 241–259.MATHMathSciNetGoogle Scholar
  9. TONTI, E.: Variational principles in elastostatics. Mechanica 2 (1967) 201–208.CrossRefMATHMathSciNetGoogle Scholar
  10. WERNER, B.: Complementary variational principles and non-conforming Trefftz elements. Internat. Series Numer.Math. (ISNM) vol. 56 (1981) 180–192.Google Scholar
  11. BABUšKA, I.: The finite element method with Lagrangian multipliers. Nutner. Math. 20 (1973) 179–192.MATHGoogle Scholar
  12. BRAMBLE, J.H.: The Lagrange multiplier method for Dirichlet’s problem. Math, of Computation 155 (1981) 1–12.MathSciNetGoogle Scholar
  13. BREZZI, F., RAVIART, P.A.: Mixed finite element methods for 4th order elliptic equations. In: J.H. Miller (ed.): Proc. Royal Irish Academy Conference on Numerical Analysis. Topics in Numerical Analysis III, 1976. Academic Press 1977, 33–56.Google Scholar
  14. BUFLER, H.: Variationsgleichungen und finite Elemente. Bayer. Akad. d. Wiss. Math.-Nat. Klasse Bd. 1975, 155–187.Google Scholar
  15. CIARLET, P.G., RAVIART, P.A.: A mixed finite element method for the biharmonic equation. In: C. de Boor (Ed.): Mathematical aspectes of finite elements in partial differential equations. Academic Press 1874, pp. 125–145.Google Scholar
  16. HASLTNGER, J.: Dual finite element analysis for an inequality of the 2nd order. Aplikace Matematiky 24 (1979) 118–132.MathSciNetGoogle Scholar
  17. HLAVáČEK, I.: Dual finite element analysis for unilateral boundary value problems. Aplikace Matematiky 22 (1977) 14–51.MATHMathSciNetGoogle Scholar
  18. HLAVáČEK, I.: Convergence of dual finite element approximations for unilateral boundary value problems. Aplikace matematiky 25 (1980) 375–386.MATHMathSciNetGoogle Scholar
  19. QUARTERONI, A.: On mixed methods for fourth-order problems. Computer methods in applied mechanics and engineering 24 (1980) 13–34.CrossRefMATHMathSciNetGoogle Scholar
  20. RANNACHER, R.: On nonconforming and mixed finite element methods for plate bending problems. The linear case. RAIRO Numer. Anal. 13 (1979) 369–387.MATHMathSciNetGoogle Scholar
  21. SCAPOLA, T. : A mixed finite element method for the biharmonic problem. R.A.I.R.O. Anal. Numér. 14 (1980) 55–79.Google Scholar
  22. SCHOLZ, R.: Approximation von Sattelpunkten mit finiten Elementen. Bonner Math. Schriften 89 (1976) 53–66.MathSciNetGoogle Scholar
  23. SCHOLZ, R.: A mixed method for 4th order problems using linear finite elements. R.A.I.R.O. Anal. Numer. 12 (1978) 85–90.MATHMathSciNetGoogle Scholar
  24. WUNDERLICH, W.: Mixed models for plates and shells: Principles — Elements -Examples. S. 215–241 in: S.N. Atluri, R.H. Gallagher, O.C. Zienkiewicz (ed.): Hybrid and finite element methods. John Wiley 1983.Google Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • W. Velte
    • 1
  1. 1.Univesität WürzburgWürzburgGermany

Personalised recommendations