Skip to main content

Complementary Variational Principles

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 301))

Abstract

As is well known, variational methods belong to the fundamental principles in mathematics and in mechanics. They are of interest not only from the theoretical but also from the numerical point of view. Indeed, when discretized the variational principles immediately provide numerical schemes for solving the underlying problem numerically. In particular, variational principles in various forms are videly used in order to establish Ritz — Galerkin schemes in finite element spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. COURANT, R. and HILBERT, D. : Methoden der mathematischen Physik. Springer-Verlag. Heidelberger Taschenbücher vol. 30 und 31.

    Google Scholar 

  2. TREFFTZ, E.: Ein Gegenstück zum Ritzschen Verfahren. Verhandl. d. 2. Internat. Kongreß f. techn. Mechanik. Zürich 1926, 131–138.

    Google Scholar 

  3. EKELAND, I. and TEMAM, R.: Convex analysis and variational problems. North-Holland Publ. Company, Amsterdam 1976.

    MATH  Google Scholar 

  4. SEWELL, M.J.: Dual approximation principles and optimization in continuum mechanics. Phil. Trans. Roy. Soc. (London) A 265 (1969) 319–351.

    Article  MATH  MathSciNet  Google Scholar 

  5. NOBLE, B., SEWELL, M.J.: On dual extremum principles in Applied Mathematics. J. Inst. Math. Appl. 9 (1972) 123–193.

    Article  MATH  MathSciNet  Google Scholar 

  6. ROBINSON, P.D.: Complementary variational principles. In: Rall, L.B. (Ed.): Nonlinear functional analysis and applications. Academic Press 1971, pp. 509–576.

    Google Scholar 

  7. ODEN, J.T. and REDDY, J.N.: Variational methods in theoretical mechanics. Springer-Verlag Berlin, Heidelberg, New York 1976.

    Book  MATH  Google Scholar 

  8. VELTE, W.: Direkte Methoden der Variationsrechnung. Teubner Studienbücher Mathematik. Teubner Verlag Stuttgart 1976.

    Book  MATH  Google Scholar 

  9. NECAS, J.: Les méthodes directes en théorie des équations elliptiques. Masson et Cie., Paris, Academia, Prag 1967.

    MATH  Google Scholar 

  10. DUVAUT, G. and LIONS, J.L.: Les inéquations an mécanique et en physique. Dunaud, Paris 1972.

    Google Scholar 

  11. KINDERLEHRER, D., STAMPACCHIA, G.: An introduction into variational inequalities and their applications. Academic Press 1980.

    Google Scholar 

  12. FICHERA, G.: Boundary value problems of elasticity with unilateral constraints. S. 392–424 in: Flügge, S. (Herausg.): Handbuch der Physik vol. VI a/2. Springer-Verlag Berlin, Heidelberg, New York.

    Google Scholar 

  13. LIONS, J.L., STAMPACCHIA, G.: Variational inequalities. Comm. Pure Appl. Math. 20 (1969) 493–519.

    Article  MathSciNet  Google Scholar 

  14. HASLINGER, J.: Dual finite element analysis for an inequality of the 2nd order. Aplikace Matematiky 24 (1979), 118–132.

    MATH  MathSciNet  Google Scholar 

  15. BREZZI, F., HAGER, W.W., RAVIART, P.A.: Error estimates for the finite element solution of variational inequalities, part I. Primal theory. Part II. Mixed methods. Numer.Math. 28 (1977) 431–443. 31 (1978) 1–16.

    MathSciNet  Google Scholar 

  16. RAVIART, P.A., THOMAS, J.M.: A mixed finite element method for 2nd oder elliptic problems. In: Mathematical aspects of the FEM (Rom, December 1975). Springer Lecture Notes in Math. vol. 606.

    Google Scholar 

  17. BREZZI, F.: On the existence, uniqueness and approximations of saddle-point problems arising from Lagrangian multipliers. R.A.I.R.O. Anal. Numer. 11 (1977) 209–216.

    Google Scholar 

Additional references

  • ALLEN, G.: Variational inequalities, complementary problems and duality theorems. J. f. Math. Anal. and Appl. 58 (1977) 1–10.

    Article  MATH  Google Scholar 

  • ARTHURS, A.M.: Complementary variational principles. Oxford Math. Monographs, Oxford 1970.

    MATH  Google Scholar 

  • COTTLE, R.V., GIANESSI, F., LIONS, J.-L.: Variational Inequalities and Complementary Problems. Theory and Applications. (Internat. School of Math., 19.–30. Juni 1978 in Erice Sicily) John Wiley and Sons 1980.

    Google Scholar 

  • FRAEIJS DE VEUBEKE, B.: Displacement and equilibrium models in the finite element method. S. 145–197 in: O.C. Zienkiewicz, G.S. Holister (Eds.) Stress Analysis, John Wiley 1965.

    Google Scholar 

  • FRAEIJS DE VEUBEEKE, B.: The duality principles of elastodynamics. Finite elements applications. S. 357–377 in: Lectures in finite element methods in continuum mechanics. Ed. by J.T. Oden, E.R. De Arantes e Oliveira The Univ. of Alabama Press, Huntsville 1973.

    Google Scholar 

  • GWINNER, J.: Nichtlineare Variationsgleichungen mit Anwendungen. Verlag Haag u. Herchen, Frankfurt/M. 1978

    Google Scholar 

  • GWINNER, J.: Bibliography on non-differentiable optimization and non-smooth analysis. [Vierhundert Referenzen.] J. of Computational and Applied Math. 7 (1981) 277–285.

    Article  MATH  MathSciNet  Google Scholar 

  • PRAGER, W., SYNGE, J.L.: Approximations in elasticity based on the concept of function space. Quart. Appl. Math. 5 (1947) 241–259.

    MATH  MathSciNet  Google Scholar 

  • TONTI, E.: Variational principles in elastostatics. Mechanica 2 (1967) 201–208.

    Article  MATH  MathSciNet  Google Scholar 

  • WERNER, B.: Complementary variational principles and non-conforming Trefftz elements. Internat. Series Numer.Math. (ISNM) vol. 56 (1981) 180–192.

    Google Scholar 

  • BABUšKA, I.: The finite element method with Lagrangian multipliers. Nutner. Math. 20 (1973) 179–192.

    MATH  Google Scholar 

  • BRAMBLE, J.H.: The Lagrange multiplier method for Dirichlet’s problem. Math, of Computation 155 (1981) 1–12.

    MathSciNet  Google Scholar 

  • BREZZI, F., RAVIART, P.A.: Mixed finite element methods for 4th order elliptic equations. In: J.H. Miller (ed.): Proc. Royal Irish Academy Conference on Numerical Analysis. Topics in Numerical Analysis III, 1976. Academic Press 1977, 33–56.

    Google Scholar 

  • BUFLER, H.: Variationsgleichungen und finite Elemente. Bayer. Akad. d. Wiss. Math.-Nat. Klasse Bd. 1975, 155–187.

    Google Scholar 

  • CIARLET, P.G., RAVIART, P.A.: A mixed finite element method for the biharmonic equation. In: C. de Boor (Ed.): Mathematical aspectes of finite elements in partial differential equations. Academic Press 1874, pp. 125–145.

    Google Scholar 

  • HASLTNGER, J.: Dual finite element analysis for an inequality of the 2nd order. Aplikace Matematiky 24 (1979) 118–132.

    MathSciNet  Google Scholar 

  • HLAVáČEK, I.: Dual finite element analysis for unilateral boundary value problems. Aplikace Matematiky 22 (1977) 14–51.

    MATH  MathSciNet  Google Scholar 

  • HLAVáČEK, I.: Convergence of dual finite element approximations for unilateral boundary value problems. Aplikace matematiky 25 (1980) 375–386.

    MATH  MathSciNet  Google Scholar 

  • QUARTERONI, A.: On mixed methods for fourth-order problems. Computer methods in applied mechanics and engineering 24 (1980) 13–34.

    Article  MATH  MathSciNet  Google Scholar 

  • RANNACHER, R.: On nonconforming and mixed finite element methods for plate bending problems. The linear case. RAIRO Numer. Anal. 13 (1979) 369–387.

    MATH  MathSciNet  Google Scholar 

  • SCAPOLA, T. : A mixed finite element method for the biharmonic problem. R.A.I.R.O. Anal. Numér. 14 (1980) 55–79.

    Google Scholar 

  • SCHOLZ, R.: Approximation von Sattelpunkten mit finiten Elementen. Bonner Math. Schriften 89 (1976) 53–66.

    MathSciNet  Google Scholar 

  • SCHOLZ, R.: A mixed method for 4th order problems using linear finite elements. R.A.I.R.O. Anal. Numer. 12 (1978) 85–90.

    MATH  MathSciNet  Google Scholar 

  • WUNDERLICH, W.: Mixed models for plates and shells: Principles — Elements -Examples. S. 215–241 in: S.N. Atluri, R.H. Gallagher, O.C. Zienkiewicz (ed.): Hybrid and finite element methods. John Wiley 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Wien

About this chapter

Cite this chapter

Velte, W. (1988). Complementary Variational Principles. In: Stein, E., Wendland, W. (eds) Finite Element and Boundary Element Techniques from Mathematical and Engineering Point of View. CISM International Centre for Mechanical Sciences, vol 301. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2826-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2826-8_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82103-9

  • Online ISBN: 978-3-7091-2826-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics