Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 310))

Abstract

Dynamic (inertia and strain rate) effects influence crack growth processess if the applied loading rate is sufficiently high or if the crack tip moves with a speed that is a significant fraction of the wave velocities. In the paper basic results as well as solutions to boundary value problems incorporating dynamic effects are discussed. The integral expression for the energy flow to a moving crack tip is derived and related path-area integrals are discussed. It is shown that these quantities are non-trivial only if the energy density behaves as O(r−½). The J-integral emerges as a special case of the general formulations. For linear dynamic problems a line integral defined in the Laplace transform space is introduced. The asymptotic field of a crack growing dynamically in a linear elastic material is derived and the stress-intensity factors are defined. KI-solutions are discussed for a number of problems involving both stationary cracks under dynamic loading as well as moving tips. Asymptotic solutions are given for both stationary and moving tips in different non-linear materials with either rate-independent or rate-dependent elasto-plastic behaviour. These solutions provide the basis for a discussion of dynamic crack growth criteria. Finally, some aspects on numerical modelling of dynamic crack problems are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pugh, C. E., Bass, B. R., Naus, DJ., Nanstad, R. K., deWit, R., Fields, R. J. and S. R. Low IE: Crack run-arrest behaviour in wide SEN plates of a LWR pressure vessel Material, in: Trans. 9th Int. Conf. on Structural Mechanics in Reactor Technology, (Ed. F. H. Wittman), Vol. G, 1987, 21–26.

    Google Scholar 

  2. Strifors, H.: Thermomechanical theory of fracture, kinematics and physical principles, Department of Strength of Materials, Royal Institute of Technology, Stockholm, Sweden, Report 27, 1980. 1

    Google Scholar 

  3. Strifors, H.: Thermomechanical theory of fracture based upon the linear strain tensor, Department of Strength of Materials, Royal Institute of Technology, Stockholm, Sweden, Report 28, 1980.1

    Google Scholar 

  4. Lidström, P.: Equations of balance and related problems in continuum fracture mechanics, Lund University, Lund, Sweden, LUTFD2/(TFME-1001)/1–11/, (1985), 1985.

    Google Scholar 

  5. Barenblatt, G. I.: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, J. Appl. Math. Mech. PMM, 23 (1959), 622–635.

    Article  MATH  MathSciNet  Google Scholar 

  6. Broberg, K. B.: Mathematical methods in fracture mechanics, in: Trends in Applications of Pure Mathematics to Mechanics,Vol III, (Ed. H. Zorski), Pitman Publ. Ltd, 1979, 57–78.

    Google Scholar 

  7. Griffith, A. A.; The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc., A221 (1921), 163–173.

    Article  Google Scholar 

  8. Kostrov, B. V. and L. V. Nikitin: Some general problems of mechanics of brittle fracture, Arch. Mech. Stos., 22 (1970), 749–776.

    MATH  Google Scholar 

  9. Strifors, H. C.: A generalized force measure of conditions at crack tips, Int. J. Solids and Structures, 10 (1974), 1389–1404.

    Article  MATH  Google Scholar 

  10. Kishimoto, K., Aoki, S. and M. Sakata: Dynamic stress intensity factors using Ĵ-integral and finite element method, Eng. Fract. Mech., 13 (1980), 387–394.

    Article  Google Scholar 

  11. Atluri, S. N.: Path-independent integrals in finite elasticity and inelasticity, with body force, inertia and arbitrary crack-face conditions, Eng. Fract. Mech., 16 (1982), 341–364.

    Article  Google Scholar 

  12. Moran, B. and C. F. Shih: Crack tip and associated domain integrals from momentum and energy balance, Eng. Fract. Mech., 27 (1987), 615–642.

    Article  Google Scholar 

  13. Nilsson, F.: A path-independent integral for transient crack problems, Int. J. of Solids and Structures, 9 (1973), 1107–1115.

    Article  MATH  Google Scholar 

  14. Gurtin, M. E.: On a path-independent integral for elastodynamics, Int. J. of Fracture, 12 (1976), 643–644.

    Google Scholar 

  15. Gol’dstein, R. V. and RX. Salganik: Brittle fracture of solids with arbitrary cracks, Int. J. of Fract., 10 (1974), 507–523.

    Article  Google Scholar 

  16. Achenbach, J. D.: Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  17. Sih, G. C.: Dynamic aspects of crack propagation, in: Inelastic Behaviour of Solids (Ed. Jaffee, R. I. and M. F. Kanninen), McGraw-Hill, New York, 1970.

    Google Scholar 

  18. Nilsson, F.: A note on the stress-singularity at a non-uniformly moving crack tip, J. of Elasticity, 4 (1974), 73–75.

    Article  MATH  Google Scholar 

  19. Clifton, R. J. and L. B. Freund: On the uniqueness of plane elastodynamic solutions for running cracks, J. of Elasticity, 4 (1974), 293–299.

    Article  MATH  Google Scholar 

  20. Achenbach, J. D. and Z. P. Bazant: Elastodynamic near-tip stress and displacement fields for rapidly propagating cracks in orthotropic materials, J. Applied Mechanics, 42 (1975), 183–189.

    Article  MATH  Google Scholar 

  21. Maue, A. W.: Die Beugung Elastischer Wellen an der Halbebene, ZAMM, 33 (1953), 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  22. Sih, G. C., Embley, G. T. and R. S. Ravera: Impact response of a finite crack in plane extension, Int. J. Solids and Structures, 7 (1971), 731.

    Article  Google Scholar 

  23. Thau, S. A. and T. H. Lu: Transient stress intensity factors for a finite crack in an elastic solid caused by a dilatational wave, Int. J. Solids and Structures, 7 (1971), 731–750.

    Article  MATH  Google Scholar 

  24. Kim, K. S.: Dynamic crack propagation of a finite crack, Int. J. Solids and Structures, 15 (1979), 685–699.

    Article  MATH  Google Scholar 

  25. Chen, Y. M.: Numerical computation of dynamic stress intensity factors by a Lagrang-ian finite-difference method(the HEMP code), Eng. Fract. Mech., 7 (1975), 653–660.

    Article  Google Scholar 

  26. Aberson, J. A., Anderson, J. M. and W. W. King: Dynamic analysis of cracked structures using singularity finite elements, in: Mechanics of Fracture, 4, (Ed. G. C. Sih) Noordhoff, Leyden 1977.

    Google Scholar 

  27. Brickstad, B.: A FEM-analysis of crack arrest experiments, Int. J. Fracture, 21 (1983), 177–191.

    Article  Google Scholar 

  28. ABAQUS, User’s Manual, version 4. 5, Hibbitt, Karlsson and Sorensen Inc., Providence R. I., 1985.

    Google Scholar 

  29. Nilsson, F.: Dynamic stress intensity factors for finite strip problems, Int. J. Fract. Mech., 8 (1972), 403–411.

    Google Scholar 

  30. Dahlberg, L., Nilsson, F. and B. Brickstad: Influence of specimen geometry on crack propagation and arrest toughness, in: Crack Arrest Methodology and Applications, ASTM STP 711(ed. G. T. Hahn and M. F. Kanninen), ASTM, Philadelphia (1980), 9–108.

    Google Scholar 

  31. Willis, J. R.: Self-similar problems in elastodynamics, Phil. Trans Roy. Soc., Series A, 274 (1973), 435–491.

    Article  MATH  MathSciNet  Google Scholar 

  32. Cherepanov, G. P. and E. F. Afas’anev: Some dynamic problems of the theory of elasticity- a review, Int. J. Eng. Science, 12 (1974), 665–690.

    Article  MATH  Google Scholar 

  33. Broberg, K. B.: The propagation of a brittle crack, Arkiv för Fysik, 18 (1960), 739–750.

    MathSciNet  Google Scholar 

  34. Freund, L. B.: Crack propagation in an elastic solid subjected to general loading-I. Constant rate of extension, J. Mech. Phys. Solids, 20 (1972), 129–140.

    Article  MATH  MathSciNet  Google Scholar 

  35. Eshelby, J. D.: The elastic field of a crack extending non-uniformly under general anti-plane loading, J. Mech. Phys. Solids, 17 (1969), 177–199.

    Article  MATH  Google Scholar 

  36. Freund, L. B.: Crack propagation in an elastic solid subjected to general loading-II. Non-uniform rate of Extension, J. Mech. Phys. Solids, 20 (1972), 141–152.

    Article  Google Scholar 

  37. Freund, L. B.: Crack propagation in an elastic solid subjected to general loading-Ill. Stress-wave loading, J. Mech. Phys. Solids, 21 (1973), 47–61.

    Article  MATH  Google Scholar 

  38. Freund, L. B.: Crack propagation in an elastic solid subjected to general loading-IV. Obliquely incident stress pulse, J. Mech. Phys. Solids, 22 (1974), 137–146.

    Article  MATH  Google Scholar 

  39. Burridge, R.: An influence function for the intensity factor in tensile fracture, Int. J. Eng. Science, 14 (1976), 725–730.

    Article  MATH  Google Scholar 

  40. Kostrov, B. V.: On the crack propagation with variable velocity, Int. J. of Fracture, 11 (1975), 47–56.

    Article  Google Scholar 

  41. Nilsson, F.: Steady crack propagation followed by nonsteady growth-Mode I solution, Im. J. Solids and Structures, 13 (1977), 1133–1139.

    Article  MATH  Google Scholar 

  42. Brickstad, B. and F. Nilsson: Numerical evaluation by FEM of crack propagation experiments, Int. J. of Fract., 16 (1980), 71–84.

    Article  Google Scholar 

  43. Gudmundsson, P.: Validity of asymptotic solutions for plastic materials, To be presented at ICF7, Houston, 1989.

    Google Scholar 

  44. Hult, A. J. and F. McClintock: Elastic-plastic stress and strain distributions around sharp notches under repeated shear, Proc. 9th Int. Congr. Appl. Mech., Brussels, 8 1956), 51–58.

    Google Scholar 

  45. Rice, J. R.: Mathematical Analysis in the Mechanics of Fracture, in: Fracture: An Advanced Treatise II (Ed. H. Liebowitz), Academic Press, New York 1968, 191–308.

    Google Scholar 

  46. Hutchinson, J. W.: Singular behaviour at the end of a tensile crack in a hardening material, J. Mech. Phys. Solids, 16 (1968), 13–31.

    Article  MATH  Google Scholar 

  47. Rice, J. R. and G. Rosengren: Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids, 16 (1968), 1–12.

    Article  MATH  Google Scholar 

  48. Slepyan, L. I.: Crack dynamics in an elastic plastic body, Izv. Akad. Nauk SSSR MTT, 11 (1976), 126.

    Google Scholar 

  49. Freund, L. B. and A. S. Douglas: The influence of inertia on elastic-plastic antiplane-shear crack growth, J. Mech. Phys. Solids, 30 (1982), 59–74.

    Article  MATH  Google Scholar 

  50. Drugan, W. J., Rice, J. R. and T. L. Sham: Asymptotic analysis of growing plane strain tensile cracks in elastic-ideally plastic solids, J. Mech. Phys. Solids, 30 (1982), 447–473.

    Article  MATH  Google Scholar 

  51. Leighton, J. T., Champion C. R. and L. B. Freund: Asymptotic analysis of steady dynamic crack growth in an elastic-plastic material, J. Mech. Phys. Solids 35 (1987), 541–564.

    Article  MATH  MathSciNet  Google Scholar 

  52. Achenbach, J. D. Kanninen, M. F., and C. H. Popelar: Crack-tip fields for fast fracture of an elastic-plastic material, J. M.ch. Phys. Solids, 29 (1981), 211–225.

    Article  MATH  Google Scholar 

  53. Östlund, S. and P. Gudmundson: Asymptotic crack-tip fields for dynamic fracture of linear strain-hardening solids, Department of Strength of Materials, Royal Institute of Technology, Stockholm, Sweden, Report 83, 1987.

    Google Scholar 

  54. Nilsson, F. and P. Ståhle: Crack growth criteria and crack tip models, to appear in SM Archives, (1988).

    Google Scholar 

  55. Perzyna P.: The constutive equations for rate sensitive plastic materials. Quarterly of Appl Math., 20(1963), 321.

    MATH  MathSciNet  Google Scholar 

  56. Hui, C. Y. and H. Riedel The asymptotic stress and strain field near the tip of a growing crack under creep conditions, Int. J. Fract., 17 (1981), 409–425.

    Article  Google Scholar 

  57. Lo, K. K.: Dynamic crack tip fields in rate sensitive solids, J. Mech. Phys. Solids, 31 (1983), 287–305.

    Article  MATH  Google Scholar 

  58. Yang, W. and L. B. Freund: An analysis of anti-plane shear crack growth in a rate sensitive elastic-plastic material, Int. J. Fract., 30 (1986), 157–174.

    Article  Google Scholar 

  59. Nilsson, F.: Crack growth initiation and propagation under dynamic loading, Proc. 3rd Conference on Mechanical Properties of High Rates of Strain, Institute of Physics, ser no 70, Oxford, 1984, 185–204.

    Google Scholar 

  60. Nilsson, F., Ohlsson, P., Sjöberg, F. and P. Ståhle: A strain-rate dependent strip yield model for rapid loading conditions, to appear in Eng. Fract. Mech., (1989).

    Google Scholar 

  61. Wilson, M. L., Hawley, R. H. and. J. Duffy: The effect of loading and temperature on fracture initiation in 1020 hot-rolled steel, Eng. Fract. Mech., 13, 371–385

    Google Scholar 

  62. Brickstad, B.: A viscoplastic analysis of rapid crack propagation in steel, J. Mech. Phys. Solids, 31 (1983), 307–327.

    Article  Google Scholar 

  63. Freund, L. B. and A. S. Douglas: The influence of inertia on elastic-plastic antiplane-shear crack growth, J. Mech. Phys. Solids, 30 (1982), 50–74.

    Article  Google Scholar 

  64. Freund, L. B., Hutchinson, J. W. and P. S. Lam: Analysis of high-strain-rate elastic-plastic crack growth, Eng. Fract Mech., 23 (1986), 119–129.

    Article  Google Scholar 

  65. Mataga, P., Freund L. B. and J. W. Hutchinson: Crack tip plasticity in dynamic fracture, J. Phys. Chem. Solids, 48 (1987), 985–1005.

    Article  Google Scholar 

  66. Henshell, R. D. and K. G. Shaw: Crack tip elements are unnecessary, Int J. Num. Meth. Eng., 9 (1975), 495–507.

    Article  MATH  Google Scholar 

  67. Barsoum, R. S.: On the use of isoparametric finite elements in linear fracture mechanics, Int J. Num. Meth. Eng., 10 (1976), 25–37.

    Article  MATH  Google Scholar 

  68. Akin, J. E.: The generation of elements with singularities, Int. J. Num. Meth., Eng., 10 (1976), 1249–1259.

    Article  MATH  MathSciNet  Google Scholar 

  69. Thesken, J. C. and P. Gudmundson: Application of a variable order singular element to dynamic fracture mechanics, Comp. Mech., 2 (1987), 307–316.

    MATH  Google Scholar 

  70. Rydholm, G., Fredriksson, B. and F. Nilsson: Numerical investigation of rapid crack propagation, in: Numerical Methods in Fracture Mechanics, Pineridge Press, 1978, 660–672.

    Google Scholar 

  71. Malluck, J. F. and W. W. King: Fast fracture simulated by a finite element analysis which accounts for crack. tip energy dissipation, in: Numerical Methods in Fracture Mechanics, Pineridge Press, 1978, 648–659.

    Google Scholar 

  72. Bazant, Z. P., Glazik Jr., J. L. and J. D. Achenbach: Elastodynamic fields near running cracks by finite elements”, Comput. and Struct, 8 (1978), 193–198.

    Article  MATH  Google Scholar 

  73. Östlund, S. and P. Gudmundson: The application of moving finite elements for the study of crack propagation in linear elastic solids, Comput. and Struct., 25 (1987), 765–774.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Wien

About this chapter

Cite this chapter

Nilsson, F. (1990). Dynamic Fracture Theory. In: Klepaczko, J.R. (eds) Crack Dynamics in Metallic Materials. CISM International Centre for Mechanical Sciences, vol 310. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2824-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2824-4_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82226-5

  • Online ISBN: 978-3-7091-2824-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics