Advertisement

A Tutorial Introduction to Differential Manifolds, Calculus of Manifolds and Lie Algebras

  • M. Hazewinkel
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 303)

Abstract

The tutorial introduction is treated in two papers as follows.
  1. 1.

    Differential Manifolds and Calculus of Manifolds

     
  2. 2.

    Lie Algebras

     

Keywords

Open Subset Associative Algebra Differentiable Manifold Grassmann Manifold Oscillator Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bourbaiu (1960). Groupes et Algèbres de Lie, Chap. 1: Algèbres de Lie, Hermann.Google Scholar
  2. 2.
    M. Demazure (1967). Classificatidn des algèbres de Lie filtrés, Sém. Bourbaki 1966/1967, Exp. 326, Benjamin.Google Scholar
  3. 3.
    M. Hazewinicel. Tutorial on Manifolds and Calculus on Manifolds. This volume.Google Scholar
  4. 4.
    S. Helgason (1978). Differential Geometry, Lie Groups and Symmetric Spaces, Acad. Pr..Google Scholar
  5. 5.
    J.E. Humphreys (1972). Introduction to Lie Algebras and Representation Theory, Springer.Google Scholar
  6. 6.
    N. Jacobson (1980). Lie Algebras, Dover reprint.Google Scholar
  7. 7.
    A.J. Krener (1973). On the Equivalence of Control Systems and the Linearization of nonlinear Systems, SIAM J. Control 11, 670–676.MATHMathSciNetGoogle Scholar
  8. 8.
    J.P. Serre (1965). Lie Algebras and Lie Groups, Benjamin.Google Scholar
  9. 9.
    V.S. Varadarajan (1984). Lie groups and Lie algebras and their representations, Springer (orginally published by Prentice-Hall, 1974 ).Google Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • M. Hazewinkel
    • 1
  1. 1.CWIAmsterdamThe Netherlands

Personalised recommendations