Modeling, Analysis and Estimation of Vehicle Systems

  • W. Schiehlen
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 303)


Ground vehicles are subject to random vibrations in the vertical direction due to stochastic guideway irregularities. The vertical motions of vehicles affect the ride comfort of passengers and goods as well as the ride safety. The ride comfort can be evaluated from the accelerations of the human body while the criterion on ride safety follows from the dynamic wheel loading. A thorough dynamical analysis of vehicle vibrations requires a mathematical modeling of the guideway roughness, the vehicle itself and the sensation of the human being. The resulting stochastic differential equations may be analysed by spectral density or covariance methods, respectively. However, it is often cumbersome and difficult to obtain reliable information on the parameters of the total dynamical system. Therefore, parameter estimation methods have to be applied in vehicle dynamics for improved results.


Multibody System Vehicle Dynamic Vehicle System Rear Axle Random Vibration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Robson, J.D.: Random Vibrations. Amsterdam: Elesvier Publ. Comp., 1984.Google Scholar
  2. [2]
    Dinca, F. and Teodosiu: Nonlinear and Random Vibrations. New York: Academic Press, 1973.Google Scholar
  3. [3]
    Arslan, V.A. and Hedrick, J.K.: Nonlinear Dynamic Response of a Locomotive via a Nongaussian Statistical Linearization Prodecure. In: The Dynamics of Vehicles. Wickens, A.H. (ed.) Lisse: Swets and Zeit-linger, 1982, S. 521–534.Google Scholar
  4. [4]
    Müller, P.C. and Schiehlen, W.O.: Linear Vibrations. Dordrecht: Martinus Nijhoff Publ., 1985.Google Scholar
  5. [5]
    Müller, P.C.; Popp, K. und Schiehlen, W.O.: Berechnungsverfahren für stochastische Fahrzeugschwingungen. Ing.Arch. 49 (1980), S. 235–254.CrossRefMATHGoogle Scholar
  6. [6]
    Kozin, F. and Kozin, C.H.: A Moment Technique for System Parameter Identification. Shock and Vibration Bull. 8 (1968) S. 119–131.Google Scholar
  7. [7]
    Wedig, W.: Stochastic Identification of Stiffness and Damping Matrices. In: CISM Course on Structural Identification and Parameter Estimation. Lecture Notes. Wien: Springer-Verlag, 1983.Google Scholar
  8. [8]
    Weber, H.I. and Schiehlen, W.O.: A Filter Technique for for Parameter Identification. Mech. Res. Com. 10 (1983), S. 259–265.CrossRefMATHGoogle Scholar
  9. [9]
    Kallenbach, R.: Kovarianzmethoden zur Parameteridentifikation zeitkontinuierlicher Systeme. Fortschr. Ber. VDI-Düsseldorf: VDI- Verlag, 1987.Google Scholar
  10. [10]
    Schäfer, P.: Parameteridentifikation von Fahrzeugmodellen mit nichtinearen Kraftgesetzen unter Praxisbedingungen. Diplomarbeit DIPL-15, Institut B für Mechanik, Universität Stuttgart, 1987.Google Scholar
  11. [11]
    Schiehlen, W.: Technische Dynamik. Stuttgart: Teubner, 1985.Google Scholar
  12. [12]
    Haug, E.J. (ed.): Computer Aided Analysis and Optimization of Mechanical System Dynamics. Berlin: Springer-Verlag 1984.MATHGoogle Scholar
  13. [13]
    Bianchi, G. and Schiehlen, W. (eds): Dynamics of Multibody Systems. Berlin/…: Springer-Verlag 1986.MATHGoogle Scholar
  14. [14]
    Schiehlen, W.: Modelling of Complex Vehicle Systems. In: The Dynamics of Vehicles. Hedrick, J.K. (ed.) Lisse: Swets and Zeitlinger, 1984, S. 548–563.Google Scholar
  15. [15]
    VDI-Richtlinie 2057. Beurteilung der Einwirkung mechanischer Schwingungen auf den Menschen. Düsseldorf: Verein Dt. Ing., 1975–1979.Google Scholar
  16. [16]
    International Standard ISO 2631. Guide for the Evaluation of Human Exposure to Whole-Body Vibrations. Int. Org. Standardization 1974.Google Scholar
  17. [17]
    Smith, P.A.: Matrix Equation XA+BX—C. SIAM J. Appl. Math. 16 (1968), S. 198–201.MATHGoogle Scholar
  18. [18]
    Reichelt, W.: Identifikationsmethoden für die Fahrzeugdynamik. Automobilt. Z. 86 (1984), S. 391–397.Google Scholar
  19. [19]
    Schiehlen, W. and Kallenbach, R.: Modeling and Identification of Linear Multibody Systems. In: Interdynamics ‘85. Heimann, B.; Friedrich, H. (eds.). Karl-Marx-Stadt: Akademie der Wiss. der DDR, 1986, Part 2, S. 219–227.Google Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • W. Schiehlen
    • 1
  1. 1.University of StuttgartStuttgartGermany

Personalised recommendations