Parametric Instability and Process Identification

  • Walter V. Wedig
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 303)


The topic of parametric instability and process identification is treated in two papers as follows.
  1. 1.

    Stability of Parametric Systems

  2. 2.

    Parameter Identification of Road Spectra and Nonlinear Oscillators



Power Spectrum Parametric Excitation Moment Equation Parametric Instability Filter Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caughey, T.K.: Nonlinear theory of random vibrations, in: Advances in Applied Mechanics, 11, Academic Press, 1971, pp. 209–253.Google Scholar
  2. 2.
    Crandall, S.H.: Perturbation techniques for random vibrations of nonlinear systems. J. Acoustical Soc. Am., 35, 1963, pp. 1700–1705.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Wedig, W.: Regions of instability for a linear system with random parametric excitation, In: Lecture Notes in Math., 294, Springer-Verlag, New York, 1972, pp. 160–172.Google Scholar
  4. 4.
    Booton, R.C.: The analysis of nonlinear control systems with random inputs. IRE Trans. Circuit Theory, 1, 1954, pp. 32–34.Google Scholar
  5. 5.
    Caughey, T.K.: Equivalent linearization technique. J. Acoustical Soc. Am., 35, 1963, pp. 1706–1711.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bogdanoff, J.L. and Kozim, F.: Moments of the output of linear random systems. J. Acoustical Soc. Am., 34, 1962, pp. 1063–1066.CrossRefGoogle Scholar
  7. 7.
    Wu, W.F. and Lin, Y.K.: Cumulant-neglect closure for non-linear oscillators under random parametric and external excitations. Int. J. Non-linear Mech., 19, 1984, pp. 349–362.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Stratonovich, R.L.: Topics in the Theory of Random Noise, 1, Gordon and Breach, New York, 1963.Google Scholar
  9. 9.
    Ariaratnam, S.T.: Dynamic stability of a column under random loading, In: Pro. Int. Conf. on Dynamic Stability of Structures, Pergamon, New York, 1967, pp. 267.Google Scholar
  10. 10.
    Caughey, T.K.: Derivation and application of the Fokker-Planck equation, J. Acoust. Soc. Am., 35, 1963, p. 16–83.Google Scholar
  11. 11.
    Ito, K.: On a formula concerning stochastic differentials. Nagoya Math. J. Jap., 3, 1951, p. 55.MATHGoogle Scholar
  12. 12.
    Parkus, H.: Random Processes in Mechanical Sciences, CISN Courses and Lectures, No 9, Springer-Verlag, Wien, 1969.Google Scholar
  13. 13.
    Wedig, W.: Stochastische Schwingungen — Simulation, Schatzung und Stabilität, ZAMM 67, 4, 1987, T34 - T42.MATHMathSciNetGoogle Scholar
  14. 14.
    Braun, H.: Spektrale Dichte von Fahrbahnunebenheiten. Tagungsband der VDI-Tagung Akustik und Schwingungstechnik, VDI-Verlag, Dusseldorf, 1970, pp. 539–546.Google Scholar
  15. 15.
    Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, Berlin, 1966, pp. 347–348.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • Walter V. Wedig
    • 1
  1. 1.Institute for Technical MechanicsUniversity of KarlsruheKarlsruheGermany

Personalised recommendations