Skip to main content

Structural Parameter Identification Techniques

  • Conference paper
Analysis and Estimation of Stochastic Mechanical Systems

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 303))

Abstract

In these lectures we review certain results on the problem of parameter, estimation and system identification as applied to structural engineering. The importance of this problem in structural engineering has steadily increased in recent years, primarily motivated by the desire to have a more accurate description of the structure and its dynamical characteristics for purposes of predicting its response to environmental excitations such as earthquakes and wind generated pressure loadings, being able to assess aging or damage through changes in the salient structural parameters, and finally for purposes of applying controllers to structures that can reduce unwanted responses to the environmental excitations.

Naturally, since the field is quite broad in its scope, it will be quite impossible to cover all aspects, or all significant results. Instead, we present a summary of some significant results that have applications to the structural field.

Rather than merely present a brief discussion of results, we state in some detail what can be said concerning convergence and accuracy of the techniques available, along with examples to illustrate the ideas presented. We discuss time domain techniques, and concentrate on continuous time models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hart, G.C., Yao, J.T.P., System identification in structural dynamics, ASCE Journ. Eng. Mech. EMG, Dec. 1977, 1089–1104.

    Google Scholar 

  2. Gersch, W., Parameter identification: Stochastic process techniques, Shock and Vibration Digest, 1975.

    Google Scholar 

  3. Proceedings of 6th IFAC Symposium on Identification and System Parameter Estimation, Arlington, Va., 1982.

    Google Scholar 

  4. Pilkey, W.D., Cohen, R. (Editors), System identification of vibrating structures-Mathematical models from test data, ASME publications, 1972.

    Google Scholar 

  5. Ting, E.C., et al., System identification, damage assessment and reliability evaluation of structures, Report CE-STR-78–1, School of Civil Eng., Purdue Univ., 1978.

    Google Scholar 

  6. Natke, H.G., Editor, Identification of vibrating structures, CISM Lectures No. 272 Springer-Verlag, New York, 1982.

    Google Scholar 

  7. Ljung, L., Identification Methods, Proc. 6th IFAC Symposium on Identification and System Parameter Estimation, Arlington, Va., June 1982, 11–18.

    Google Scholar 

  8. Nakajima, F., Kozin, F., A characterization of consistent estimators, IEEE Trans. Auto. Cont. Vol. AC-24, No. 5, Oct. 1979, 758–765.

    Article  MATH  MathSciNet  Google Scholar 

  9. Kozin, F., Kozin, C.H., A moment technique for system parameter identification, Shock and Vibration Bulletin, No. 38, Part II, Aug. 1968, 119–131 (also NASA report No. CR98738, April 1968 ).

    Google Scholar 

  10. Raggett, J.D., Rojahn, C., Use and interpretation of strong-motion records for highway bridges, Federal Highway Administration Report No. FHWA-RD-78–158, October, 1978.

    Google Scholar 

  11. Raggett, J.D., Rojahn, C., Analysis of the three story polygon test structure vibration tests, Dushanbe Tajikistan-Preliminary report, Seismic Eng. Branch, U.S. Geological Survey.

    Google Scholar 

  12. Distefano, N., Todeschini, R., Modeling, identification and prediction of a class of non-linear visoelastic systems, Int. Journ. of Solids and Structures, Vol. 1, No. 9, 1974, 805–818.

    Google Scholar 

  13. Distefano, N. Rath, A., System identification in nonlinear structural seismic dynamics, Computer Meth. Appl, Mech. and Engr. Vol. 5, No. 3, 1975.

    Google Scholar 

  14. Udwadia, F.E., Sharma, D.K., Some uniqueness results related to building structural identification, SIAM Journ. Appl. Math. Vol. 34, No. 1, Jan. 1978, 104–118.

    Article  MATH  MathSciNet  Google Scholar 

  15. Udwadia, F.E., Some uniqueness results related to soil and building structural identification, SIAM Journ. Appl. Math. Vol. 45, No. 4, Aug. 1985, 674–685.

    Article  MATH  MathSciNet  Google Scholar 

  16. Fisz, M., Probability theory and mathematical statistics, Wiley & Sons, New York, 1963.

    MATH  Google Scholar 

  17. Girsanov, I.V., On transforming a certain class of stochastic processes by absolutely continuous substitution of measures, Theory of Prob. and Appl., Vol. 5, 1960, 285–301.

    Article  Google Scholar 

  18. Wong, E., Stochastic processes in information and dynamical systems, McGraw-Hill, New York, 1971.

    MATH  Google Scholar 

  19. Khazminskii, R.Z., Stochastic stability of differential equations, (Eng. translation) (Chap. 6, Sec. 7 ) Sijthoff-Noordhoff, Alphen aan den Rijn, Holland, 1980.

    Google Scholar 

  20. Lee, T.S., Kozin, F., Almost sure asymptotic likelihood theory for diffusion processes, Jour. Appl. Prob., Vol. 14, 1977, 527–537.

    Article  MATH  MathSciNet  Google Scholar 

  21. Khazminskii, R.Z., Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for Parabolic equations, Theory of Prob. and Appl., Vol. 5, 1960, 179–196.

    Article  Google Scholar 

  22. Wonham, W.M., Lyapunov criteria for weak stochastic stability, Jour. Diff. Equa., Vol. 2, 1966, 195–207.

    Article  MATH  MathSciNet  Google Scholar 

  23. Zakai, M., A Lyapunov criterion for the existence of stationary probability distribution for systems perturbed by noise, SIAM Jour. Contr. Vol. 7, 1969, 390–397.

    Article  MATH  MathSciNet  Google Scholar 

  24. Blankenship, G.L., Limiting distributions and the moment problem for nonlinear stochastic differential equations, Report, Systems Research Center, Case Western Reserve University, July 1975.

    Google Scholar 

  25. Dym, H., Stationary measures for the flow of a linear differential equation driven by white noise, Trans. Amer. Math. Soc., Vol. 123, 1966, 130–164

    Google Scholar 

  26. Arnold, L., Wihstutz, V., Stationary solutions of linear systems with additive and multiplicative noise, Stochastics Vol. 7, 1982, 133.

    Article  MATH  MathSciNet  Google Scholar 

  27. Brown, B.M., Eagleson, G.K., Martingale convergence to infinitely divisible laws with finite variances, Trans. Amer. Math. Soc., Vol. 162, 1971, 449–453.

    Article  MathSciNet  Google Scholar 

  28. Bellach, B., Parameter estimators in linear stochastic differential equations and their asymptotic properties, Math. Opers. Forsch. Statis. Vol. 14, No. 1, 1983, 141–191.

    MATH  MathSciNet  Google Scholar 

  29. Wen, Y.K., Equivalent linearization for hysteretic systems under random vibration, ASME Jour. Appl. Mech. Vol. 47, No. 1, March 1980.

    Google Scholar 

  30. Wedig, W., Fast algorithms in the parameter identification of dynamic systems, Proc. IUTAM Symp. Random vibrations and reliability, K. Hennig, Ed., Akademie-Verlag, Berlin, 1983, 217–227.

    Google Scholar 

  31. Gersch, W., Nielsen, N., Akaike, H., Maximum likelihood estimation of structural parameters from random vibrational data, Jour. Sound and Vibration, Vol. 31, 1973, 295–308.

    Article  MATH  Google Scholar 

  32. Gersch, W., Luo, S., Discrete time series synthesis of randomly excited structural system response, Jour. Acous. Soc. of America. Vol. 51, 1972, 402–408.

    Article  MATH  Google Scholar 

  33. Gersch, W., On the achievable accuracy of structural system parameter estimates, Jour. Sound and Vibration, Vol. 34, 1974, 63–79.

    Article  MATH  Google Scholar 

  34. Gersch, W., Taoka, G.T., Liu, R., Estimation of structural system parameters by a two stage least squares method, ASCE Natl. Structural Engineering Convention, New Orleans, April 1975, preprint #2440.

    Google Scholar 

  35. Gersch, W., Foutch, D.A., Least squares estimates of structural system parameters using covariance data, IEEE Trans. Auto. Cont. AC-19, 1974, 898–903.

    Google Scholar 

  36. Gersch, W., Liu, S., Time series methods for synthesis of random vibration systems, ASME Trans. Appl. Mech. Vol. 43, March 1976, 159165.

    Google Scholar 

  37. Bartlett, M.S., The theoretical specification and sampling properties of autocorrelated time series, Jour. Royal Stat. Soc. Series B., Vol. 8, 1946, 27–41.

    MATH  MathSciNet  Google Scholar 

  38. Shinozuka, M., Samaras, E., ARMA model representation of random processes, Proc., 4th ASCE Specialty Conference. Probabilistic Mechanics and Structural Reliability, Berkeley, Jan. 1984, 405–409.

    Google Scholar 

  39. Akaike, H., Maximum likelihood identification of Gaussian autoregressive moving average models, Biometrika, 1973.

    Google Scholar 

  40. Box, G.E.P., Jenkins, G.M., Time series, forecasting and control, Revised edition, Holden-Day, San Francisco, 1976.

    Google Scholar 

  41. Lee, D.T.L., et al, Recursive least squares ladder estimation algorithms, IEEE Trans. Acous., Speech & Signal Proc. Vol. ASSP-29, No. 3, June 1981.

    Google Scholar 

  42. Ljung, L., Soderstrom, T., Theory and practice of recursive identification, The MIT Press, Cambridge, Mass., 1983.

    MATH  Google Scholar 

  43. Lefkowitz, R., Evaluation of various methods of parameter estimation for ARMA processes, Eng. Degree Thesis, Systems Engineering, Polytechnic Institute of New York, January 1986.

    Google Scholar 

  44. Bagchi, A., Consistent estimates of parameters in continuous time systems, in: 0. Jacobs et al., eds., Analysis and Optimization of Stochastic Systems, Academic Press, New York.

    Google Scholar 

  45. McKean, H.P., Stochastic Integrals, Academic Press, New York and London, 1969.

    MATH  Google Scholar 

  46. Chen, X.K., Strong consistent parameter estimation. Ph.D. dissertation, Dept. of Ele. Engineering, Polytechnic University, June 1987.

    Google Scholar 

  47. Booton, R.C., The analysis of non-linear control systems with random inputs, Proc. MRI symposium on Nonlinear Circuits, Polytechnic Inst. of Brooklyn, 1958, 341–344.

    Google Scholar 

  48. Caughey, T.K., Equivalent linearization techniques, Jour. Acous. Soc. Amer. Vol. 35, 1963, 1706–1711.

    Article  MathSciNet  Google Scholar 

  49. Kazakov, I.E., Approximate probability analysis of the operational precision of essentially nonlinear feedback control systems, Auto. and Remote Control, Vol. 17, 1956, 423–450.

    MathSciNet  Google Scholar 

  50. Sunahara, Y., et al., Statistical studies in nonlinear control systems, Nippon Printing Co., Osaka, Japan, 1962.

    Google Scholar 

  51. Spanos, P.D., Stochastic linearization in structural dynamics, Appl. Mech. Rev., Vol. 34, No. 1, 1981, 1–8.

    MathSciNet  Google Scholar 

  52. Wen, Y.K., Equivalent linearization for hysteretic systems under random loading, ASME Jour. Appl. Mech. Vol. 47, 1980, 150–154.

    Article  MATH  Google Scholar 

  53. Casciati, F., Faravelli, L., Methods of nonlinear stochastic dynamics for assessment of structural fragility, Nucl. Eng. and Design Vol. 90, 1985, 341–356.

    Article  Google Scholar 

  54. Hampl, N.C., Schuëller, G.I., Probability densities of the response of non-linear structures under stochastic dynamic excitation, Proc. U.S.-Austria seminar on Stoch. Struc. Dynam. Florida Atlantic Univ., Boca Raton, Fl., May, 1987.

    Google Scholar 

  55. Kailath, T., Linear Systems (Section 9.1), Prentice-Hall, New Jersey, 1980.

    Google Scholar 

  56. Mehra, R.K., Lainiotis, D.G., System identification advances and case studies, Math. in Sci., and Eng., Vol. 126, Academic Press, New York, 1976.

    Google Scholar 

  57. Goodwin, G.C., Sin, K.S., Adaptive filtering prediction and control, Prentice-Hall, New Jersey, 1984.

    MATH  Google Scholar 

  58. Akaike, H., A new look at statistical model identification, IEEE Trans. Auto Contr. Vol. 19, 1974, 716–723.

    Article  MATH  MathSciNet  Google Scholar 

  59. Yule, G.U., On a method of investigating periodicities in disturbed series with special reference to Wolfer’s sunspot numbers, Phil. Trans., A-226, 267, 1927.

    Google Scholar 

  60. Walker, G., On periodicity in series of related terms, Proc. Royal Soc., A-131–518, 1931.

    Google Scholar 

  61. Levinson, N., The Wiener RMS Criterion in Filer Design and Prediction, Appendix B of Wiener, N., Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineering Applications, John Wiley & Sons, New York, N.Y., 1949, 129–148.

    Google Scholar 

  62. Wiggins, R.A., and Robinson, E.A., Recursive solution to the multichannel filtering problem, Journal Geophysical Research, 70(8), April, 1965.

    Google Scholar 

  63. Lee, Daniel T.L., Friedlander, B., and Morf, M., Recursive ladder algorithms for ARMA modeling, IEEE Transactions on Automatic Control, AC-27 (4), August 1982.

    Google Scholar 

  64. Marquardt, D.W., An algorithm for least squares estimation of nonlinear parameters, Journal Society of Industrial Applied Mathematics, 1963, 11, 431.

    Article  MATH  MathSciNet  Google Scholar 

  65. Widrow, B., et al., Stationary and non-stationary learning characteristics of the LMS adaptive filter, Proc. IEEE, Vol. 64, 1976, 1151–1162.

    Article  MathSciNet  Google Scholar 

  66. Nagumo, J., Noda, A., A learning method for system identification, IEEE Trans. Auto. Control, Vol. AC-12, 282–287, 1967.

    Article  Google Scholar 

  67. Shi, D.H., Kozin, F., On almost sure convergence of adaptive algorithms, IEEE Trans. Auto Contr. Vol. AC-31, 1986, 471–474.

    Article  Google Scholar 

  68. Kozin, F., Natke, H.G., System identification techniques, Structural Safety, Vol. 3, 1986, 209–316.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Wien

About this paper

Cite this paper

Kozin, F. (1988). Structural Parameter Identification Techniques. In: Schiehlen, W., Wedig, W. (eds) Analysis and Estimation of Stochastic Mechanical Systems. International Centre for Mechanical Sciences, vol 303. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2820-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2820-6_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82058-2

  • Online ISBN: 978-3-7091-2820-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics