Advertisement

Almost Σ-cyclic Abelian p-groups in L

  • Manfred Dugas
  • Rüdiger Göbel
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 287)

Abstract

We will deal with primary abelian groups in the universe V = L. Our main result will fill in a missing theorem on endomorphism rings. Assuming ZFC only, we have the two parallel results on torsion-free respectively primary abelian groups; see [DG 2, 3, 4] and [CG].

Keywords

Abelian Group Endomorphism Ring Rigid System Endomorphism Algebra Compact Cardinal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C1.
    A.L.S. Corner, On endomorphism rings of primary abelian groups, Quart. J. Math. Oxford 20 (1969), 277–296.CrossRefMATHMathSciNetGoogle Scholar
  2. C2.
    A.L.S. Corner, Additive categories and a theorem of W.G. Leavitt, Bull. Amer. Math. Soc. 75 (1969), 78–82CrossRefMATHMathSciNetGoogle Scholar
  3. CG.
    A.L.S. Corner, R. Göbel, Prescribing endomorphism algebras — a unified treatment, to appear in Proc. Lond. Math. Soc.Google Scholar
  4. DG1.
    M. Dugas, R. Göbel, Every cotorsion-free ring is an endomorphism ring, Proc. Lond. Math. Soc. 45 (1982), 319–336.CrossRefMATHGoogle Scholar
  5. DG2.
    M. Dugas, R. Göbel, On endomorphism rings of primary abelian groups, Math. Annalen 261 (1982), 359–385CrossRefMATHGoogle Scholar
  6. DG3.
    M. Dugas, R. Göbel, Endomorphism algebras of torsion modules II, pp. 400–411, Abelian Group Theory, Proceedings, Honolulu 1982/83, Springer LNM 1006 (1983).Google Scholar
  7. DG4.
    M. Dugas, R. Göbel, Every cotorsion-free algebra is an endomorphism algebra, Math. Zeitschr. 181 (1982), 451–470.CrossRefMATHGoogle Scholar
  8. EM.
    P. Eklof, A. Mekler, On endomorphism rings of N1 -separable primary groups, pp. 320–339, Abelian Group Theory, Proceedings, Honolulu 1982/83, Springer LNM 1006 (1983).Google Scholar
  9. F.
    L. Fuchs, “Infinite abelian groups”, Vol. I(1970), Vol. 11(1973), Academic Press, New York.MATHGoogle Scholar
  10. GS.
    R. Göbel, S. Shelah, On semi-rigid classes of torsion-free abelian groups, to appear in Journ. Alg. (1984).Google Scholar
  11. H.
    M. Huber, Methods of set theory and the abundandce of separable abelian p-groups, pp. 304–319, Abelian Group Theory, Proceedings, Honolulu 1982/83, Springer LNM 1006 (1983).CrossRefGoogle Scholar
  12. J.
    T. Jech, Set Theory, Academic Press, New York 1978.Google Scholar
  13. M.
    C. Megibben, Large subgroups and small homomorphisms, Michigan Journ. 13 (1966), 153–160.CrossRefMATHMathSciNetGoogle Scholar
  14. N.
    R.J. Nunke, On the structure of Tor, Proc. Colloqu. Abelian groups, pp. 115–124, Budapest 1964 and Pac. J. Math. 22 (1967, 453–464.Google Scholar
  15. R.
    F. Richman, Thin abelian groups, Pacific J. Math. (1968), 599–606.Google Scholar

Copyright information

© Springer-Verlag Wien 1984

Authors and Affiliations

  • Manfred Dugas
    • 1
  • Rüdiger Göbel
    • 1
  1. 1.Universität EssenGermany

Personalised recommendations