The Representation Type of Group Algebras

  • Andrzej Skowroński
Part of the International Centre for Mechanical Sciences book series (CISM, volume 287)


Throughout this paper we use the term algebra to mean finite-dimensional algebra over a fixed algebraically closed field K and the term module to mean finitely generated right module. Algebras, as is usual in representation theory, are assumed to be basic. For any algebra A we will denote by mod A the category of finitely generated A-modules and by ind A the full subcategory of mod A consisting of all indecomposable modules.


Representation Type Group Algebra Finite Type Full Subcategory Indecomposable Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1..
    Drozd, O.A., On tame and wild matrix problems, in Matrix problems, Kiev, 1977, 104–114.Google Scholar
  2. 2..
    Drozd, O.A., Tame and wild matrix problems, in Representations and quadratic forms, Kiev, 1979, 39–74.Google Scholar
  3. 3..
    Higman, D., Indecomposable representations at characteristic p, Duke Math. 3. 21,377–381, 1954.CrossRefMathSciNetGoogle Scholar
  4. 4..
    Meltzer, H., Skowronski, A., Group algebras of finite representation type, Math. Z. 182, 129–148, 1983CrossRefMATHMathSciNetGoogle Scholar
  5. 5..
    Meltzer, H., Skowroriski, A., Correction to “Group algebras of finite representation type”, Math. Z., to appear.Google Scholar
  6. 6..
    Krugliak, S.A., Representations of the (P#P) group over a field of charakteristic p, Dokl. Akad. Nauk SSSR 153, 1253–1256, 1963.MathSciNetGoogle Scholar
  7. 7..
    Brenner, S., Modular representations of p groups, J. Algebra 15, 89–102, 1970.CrossRefMATHMathSciNetGoogle Scholar
  8. 8..
    Bondarenko, V.M., Representations of dihedral groups over a field of characteristic 2. Math. Sbornik 96, 63–74, 1975.MathSciNetGoogle Scholar
  9. 9..
    Ringel, C.M., The indecomposable representations of dihedral 2-groups, Math. Ann. 214, 19–34, 1975.CrossRefMATHMathSciNetGoogle Scholar
  10. 10..
    Bondarenko, V.M., Drozd, O.A., Representation type of finite groups, Zap. Naučn. Sem. LOMI 71, 24–41, 1977.MATHMathSciNetGoogle Scholar
  11. 11..
    Ringel, C.M., Tame group algebras, in Darstellungstheorie, Endlich Dimensionaler Algebren, Oberwolfach, 1977, 92–95.Google Scholar
  12. 12..
    Gabriel, P., Auslander-Reiten sequences and representation-finite algebras, Lecture Notes in Math. 831, 1980, 1–71.CrossRefMathSciNetGoogle Scholar
  13. 13..
    Bongartz, K., Gabriel, P., Covering spaces in representation theory, Invent. math. 65, 331–378, 1982.CrossRefMATHMathSciNetGoogle Scholar
  14. 14..
    Gabriel, P., The universal cover of a representation-finite algebra. Lecture Notes in Math. 903, 1981, 68–105.CrossRefMathSciNetGoogle Scholar
  15. 15..
    Riedtmann, Chr., Algebren, Darstellungsköcher, Überlagerungen and zurück, Comment. Math. Helv. 55, 199–224, 1980.CrossRefMATHMathSciNetGoogle Scholar
  16. 16..
    Dowbor, P., Skowronski, A., On Galois coverings of tame algebras, to appear.Google Scholar
  17. 17..
    Dowbor, P., Skowronski, A., Galois coverings of algebras of infinite representation type, to appear.Google Scholar
  18. 18..
    Ringel, C.M., Tame algebras, Lecture Notes in Math. 831 1980, 137–287.CrossRefMathSciNetGoogle Scholar
  19. 19..
    Dowbor, P, Skowronski, A., Some remarks on the representation type of locally bounded categories, to appearGoogle Scholar
  20. 20..
    Gabriel, P., Indecomposable representations II, Symposia Math. 11, 81–104, 1973.MathSciNetGoogle Scholar
  21. 21..
    Dlab, V., Ringel, C.M., Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173, 1976Google Scholar
  22. 22..
    Waschbüsch, J., Universal coverings of selfinjective algebras, Lecture Notes in Math. 903, 1981, 331–349.CrossRefGoogle Scholar
  23. 23..
    Auslander, M., Reiten, I., Representation theory of artin algebras III, Almost split sequences, Comm. Algebra 3, 239–294, 1975.CrossRefMATHMathSciNetGoogle Scholar
  24. 24..
    Auslander, M., Reiten, I., Representation theory of artin algebras IV, Invariants given by almost split sequences, Comm. Algebra 5, 443–518.Google Scholar
  25. 25..
    Nazarova, L.A., Rojter, A.V., Kategorielle Matrizen-Probleme und die Brauer-Thrall-Vermuttung, Mitt. Math. Sem. Giessen 115, 1975, 1–153.Google Scholar
  26. 26..
    Simson, D., Vector space categories, right peak rings and their socle projective modules, 3. Algebra, to appe ar.Google Scholar
  27. 27..
    Simson, D., Representations of partially ordered sets, vector space categories and socle projective modales, Paderborn, 1983.Google Scholar
  28. 28..
    Simson, D., A module-theoretical approach to vector space categories, to appear.Google Scholar
  29. 29..
    Nazarova, L.A., Rojter, A.V., Representations of partially ordered sets, Zap. Naučn. Sem. LOMI 28, 1972, 5–31.Google Scholar
  30. 30.
    Pogorzały, Z., Skowronski, A., On algebras whose indecomposable modules are multiplicity-free, Proc. London Math. Soc. 47, 463–479, 1983.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1984

Authors and Affiliations

  • Andrzej Skowroński
    • 1
  1. 1.Nicholas Copernicus UniversityToruńPoland

Personalised recommendations