Advertisement

A Module-Theoretical Approach to Vector Space Categories

  • Daniel Simson
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 287)

Abstract

The concepfe of a vector space category over an algebraically closed field and a subspace category were introduced by Nazarova and Rojter [9] in a connection with the second Brauer-Thrall conjecture. In [11, 12] Ringel presents a nice categorical explanation of these concepts and of their use. In the present note we want to give a brief introduction to the socle projective modules technique in the study of vector space categories and indecomposable modules over artinian rings. This approach was introduced in [15, 18] as a generalization of the Gabriel’s I-spaces technique [5] and of the Coxeter type arguments by Drozd [4]applied to matrix representations of posets introduced by Nazarova and Rojter in [8].

Keywords

Peak Ring Finite Type Division Ring Projective Cover Indecomposable Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auslander M., Platzeck M.I., Reiten I., Coxeter functors without diagrams, Trans.Amer.Math.Soc. 250(1979), 1–46.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bautista R., Simson D., Torsionless modules over l-here-ditary 1-Gorenstein artinian rings, Comm. Algebra 12, 1984, to appear.Google Scholar
  3. 3.
    Bünermann, Auslander-Reiten quivers of exact one-parame-ter partially ordered sets, Lecture Notes in Math., No. 903, pp.55–61.Google Scholar
  4. 4.
    Orozd Ou.A., Coxeter transformations and representation of partially ordered sets, Funkc.Anal i Priložen., 8(1974), 34–42 (in Russian).Google Scholar
  5. 5.
    Gabriel, P., Indecomposable representations II, “Symposia Matheraatica”, Vol. XI, pp.81–104, 1973.MathSciNetGoogle Scholar
  6. 6.
    Gabriel P., The universal covering of a representation finite algebra, Lecture Notes in Math., 903, pp. 66–105.Google Scholar
  7. 7.
    Klemp B., Simson D., A diagrammatic characterization of schurian vector space Pl-categories of finite type, Bull.Pol.Ac.Math., 32(1984), to appear.Google Scholar
  8. 8.
    Nazarova L.A., Rojter A.V., Representations of partially ordered sets, Zap.Naucn.Sem. LOMI 28(1972), 5–31.Google Scholar
  9. 9.
    Nazarova L.A., Rojter A.V., Kategorielle Matrizen-Probleme und die Brauer-Thrall-Vermutung, Mitt.Math.Sera. Giessen 115(1975), 1–153.Google Scholar
  10. 10.
    Pogorzaly Z., Representation-finite special algebras, Commentationes Math., to appear.Google Scholar
  11. 11.
    Ringel C.M., Reports on the Brauer-Thrall conjectures, Lecture Notes in Math., Vol.831, 1980, pp. 104–136.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Ringel C.M., Tame algebras, Lecture Notes in Math., Vol, 831, 1980, 137–287.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Simson D. Partial Coxeter functors and right pure semi-simple hereditary rings, J. Algebra 71(1980), 195–218.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Simson D., Special schurian vector space categories and 1-hereditary right QF-2 rings, Commenationes Hath. 24(1984), to appear.Google Scholar
  15. 15.
    Simson D., On methods for the computation of indecompo-sable modules over artinian rings, in Reports of 28 Symposium on Algebra: “Ring Theory and Algebraic Geometry”; University of Chiba(Japan), 1982, pp. 143–170.Google Scholar
  16. 16.
    Simson D., Indecomposable modules over one-sided serial local rings and right pure semisimple PI-rings, Tsukuba J.Math., 7(1983), 87–103.MATHMathSciNetGoogle Scholar
  17. 17.
    Simson D., Right pure semisimple 1-hereditary Pi-rings, Rend.Sem.Mat.Univ.Padova, 71(1984),1–35.MathSciNetGoogle Scholar
  18. 18.
    Simson D., Vector space categories, right peak rings and their socle projective modules, J. Algebra, to appearGoogle Scholar
  19. 19.
    Simson D., Socle reductions and socle projective modules, to appear.Google Scholar
  20. 20.
    Simson D., Representations of partially ordered sets, vector space categories and socle projective modules, Paderborn, 1983.Google Scholar

Copyright information

© Springer-Verlag Wien 1984

Authors and Affiliations

  • Daniel Simson
    • 1
  1. 1.Nicholas Copernicus UniversityToruńPoland

Personalised recommendations