Stiffness and Damping Characteristics of Tilting-Pad Journal Bearings

  • H. Springer
Part of the International Centre for Mechanical Sciences book series (CISM, volume 273)


Lateral vibrations of large turborotors of steamturbines or hydroelectric power plants are highly influenced by the stiffness and damping characteristics of the bearings. Large turborotors are usually guided in hydrodynamic journal bearings. Tilting-pad journal bearings are used particularly for horizontal or vertical shafts of high diameters. If the amplitude of the shaft vibration is small compared with the clearance of the bearing, the characteristics of the hydrodynamic oil film can be described, corresponding to a linear theory, by unsymmetrical stiffness and damping matrices of dimension (2×2), containing four stiffness and four damping coefficients, respectively. When assuming a rigid and immovable bearing house then the stiffness and damping coefficients of the oil film depend only upon the static bearing load, the clearance and speed of the shaft and the specifications of the lubricant, see Ref.1,2. They are not influenced by the frequency of lateral shaft oscillations. However, when the bearing house is flexible or movable — for example, when a tilting-pad bearing with flexibly pivoted pads is used — then an essential influence of lateral shaft vibrations upon the stiffness and damping coefficients could occur 3,4,5. This holds even for small amplitudes of vibrations where a linear theory can be applied.


Journal Bearing Dynamic Stiffness Bearing System Shaft Center Dynamic Stiffness Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glienicke, J., Feder-und Dämpfungskonstanten von Gleitlagern für Turbomaschinen und deren Einfluß auf das Schwingungsverhalten des einfachen Rotors. Dissertation, TU Karlsruhe, 1966.Google Scholar
  2. 2.
    Varga, Z.E., Wellenbewegung, Reibung und Öldurchsatz beim segmentier- ten Radialgleitlager von beliebiger Spaltform unter konstanter und zeitlich veränderlicher Belastung. Dissertation, ETH Zürich, 1971.Google Scholar
  3. 3.
    Lund, J.W., Spring and damping coefficients for the tilting-pad journal bearing. ASLE Transactions 7, 342, 1964.CrossRefGoogle Scholar
  4. 4.
    Klumpp, R., Ein Beitrag zur Theorie von Kippsegmentlagern. Dissertation, TU Karlsruhe, 1975.Google Scholar
  5. 5.
    Malcher, L., Die Federungs-und Dämpfungseigenschaften von Gleitlagern für Turbomaschinen (Experimentelle Untersuchungen). Dissertation, TU Karlsruhe, 1975.Google Scholar
  6. 6.
    Giersig, K., Rodund II pumped storage scheme commissioned. Water Power Dam Construction, 5, 21, 1977.Google Scholar
  7. 7.
    Springer, H., Zur Berechnung hydrodynamischer Lager mit Hilfe von Tschebyscheff-Polynomen. Forschg.Ing.Wesen, 44, 126, 1978.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Springer H., Nichtlineare Schwingungen schwerer Rotoren mit vertikaler Welle und Kippsegmentradiallagern. Forschg.Ing.Wesen, 45, 119, 1979.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Springer, H., Dynamische Eigenschaften von Gleitlagern mit beweglichen Segmenten. VDI-Bericht 381, 177, 1980.Google Scholar
  10. 10.
    Finlayson, B.A., The method of weighted residuals and variational principles. Academic Press, New York, 1972.MATHGoogle Scholar
  11. 11.
    Clenshaw, C.W., Chebyshev series for mathematical functions. Her Majesty’s stationary office, London, 1962.Google Scholar

Copyright information

© Springer-Verlag Wien 1984

Authors and Affiliations

  • H. Springer

There are no affiliations available

Personalised recommendations