Anisotropic Invariants and Additional Results for Invariant and Tensor Representations

  • A. J. M. Spencer
Part of the International Centre for Mechanical Sciences book series (CISM, volume 292)


The transformation groups which characterize transverse isotropy were listed in (c) of Section 3 of Chapter 8. For simplicity, we consider Case (ii), which is invariance under the group generated by the rotations and the reflection . If only second-order tensors are considered, it is not necessary to distinguish between the five cases listed under (c) of Section 3 of Chapter 8.


Symmetric Tensor Tensor Function Independent Invariant Integrity Base Anisotropic Tensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    SMITH, G.F. and RIVLIN, R.S., The anisotropic tensors, Q.Appl.Math., 15 (1957): 309–314MathSciNetGoogle Scholar
  2. 2.
    SMITH, G.F., On transversely isotropic functions of vectors, symmetric second-order tensors and skew-symmetric second-order tensors, Q.Appl. Math. 39 (1982): 509–516MATHGoogle Scholar
  3. 3.
    SPENCER, A.J.M., Theory of Invariants, in Continuum Physics, Vol.I (ed. A.C. Eringen ), Academic Press, 1971Google Scholar
  4. 4.
    SMITH, G.F. and RIVLIN, R.S., Integrity bases for vectors–the crystal classes, Arch.Rat.Mech.Anal. 15 (1964): 169–221CrossRefMathSciNetGoogle Scholar
  5. 5.
    SMITH, G.F., Tensor and integrity bases for the gyroidal crystal classes, Q.Appl.Math. 25 (1967).: 218–221Google Scholar
  6. 6.
    SMITH, G.F. anti RIVLIN, R.S., The strain-energy function for anisotropic elastic materials, Trans.Amer.Math.Soc. 88 (1958): 175–193CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    SMITH, G.F., SMITH, M.M. and RIVLIN, R.S., Integrity bases for a symmetric tensor and a vector–the crystal classes, Arch.Rat.Mech. Anal. 12 (1963): 93–133CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    SMITH, G.F. and KIRAL, E., Integrity bases for N symmetric second-order tensors–the crystal classes, Rend.Circ.Mat.PaZermo II, Ser. 18 (1969): 5–22CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    KIRAL, E. and SMITH, G.F., On the constitutive relations for anisotropic materials–triclinic, monoclinic, rhombic, tetragonal and hexagonal crystal systems, Int.J.Engng.Sci. 12 (1974): 471–490CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    SPENCER, A.J.M., A note on the decomposition of tensors into traceless symmetric tensors, Int.J.Engng. Sci. 8 (1970): 489–505CrossRefGoogle Scholar
  11. 11.
    HANNABUSS, K.C., The irreducible components of homogeneous functions and symmetric tensors, J.Inst.Math.Applïcs. 14 (1974): 83–88CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    SMITH, G.F., On isotropic integrity bases, Arch.Rat.Mech.Anal. 18 (1965): 282–292CrossRefMATHGoogle Scholar
  13. 13.
    SMITH, G.F., On the minimality of integrity bases for symmetric 3 x3 matrices, Arch.Rat.Mech.AnaZ. 5 (1960): 382–389CrossRefMATHGoogle Scholar
  14. 14.
    SPENCER, A.J.M., On generating functions for the number of invariants of orthogonal tensors, Mathematika 17 (1970): 275–286CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • A. J. M. Spencer
    • 1
  1. 1.The University of NottinghamEngland

Personalised recommendations