On a Rational Formulation of Isotropic and Anisotropic Hardening

  • J. P. Boehler
Part of the International Centre for Mechanical Sciences book series (CISM, volume 292)


The aim of this work is to develop a unified and rational formulation of isotropic and anisotropic hardening with;_n the framework of the tensor functions representation theory. We consider the evolution of the yield criteria during plastic deformations and we assume that this evolution depends on the strain history only through the present value of the plastic strain. For more complicated situations, the proposed concepts can be developed in a straightforward manner.


Plastic Strain Hardening Rule Classical Concept Isotropic Hardening Kinematic Hardening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BACKHAUS, G., Zur Fliessgrenze bei Allgemeiner Verfestigung, ZAMM, 48 (1968): 99–108.CrossRefGoogle Scholar
  2. 2.
    BALTOV, A. and SAWCZUK A., A Rule of Anisotropic Hardening, Acta Mech., 1 (1965): 81–92.CrossRefGoogle Scholar
  3. 3.
    BOEHLER, J.P., Contributions Théoriques et Expérimentales à l’Etude des Milieux Plastiques Anisotropes, Thèse de Doctorat ès-Sciences, Grenoble, 1975.Google Scholar
  4. 4.
    BOEHLER, J.P., Lois de Comportement Anisotrope des Milieux Continus, J. de Mécanique, 17 (2), (1978): 153–190.MATHMathSciNetGoogle Scholar
  5. 5.
    BOEHLER, J.P., A Simple Derivation of Representations for Non-Polynomial Constitutive Equations in Some Cases of Anisotropy, ZAMM, 59 (1979): 157–167.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    BOEHLER, J.P., On a General Concept of Isotropic and Anisotropic Hardening. Part I: Theoretical (in preparation).Google Scholar
  7. 7.
    BOEHLER, J.P., On a General Concept of Isotropic and Anisotropic Hardening. Part II: Examples (in preparation).Google Scholar
  8. 8.
    BOEHLER, J.P. and RACLIN J., Ecrouissage Anisotrope des Matériaux Orthotropes Prédéformés, J. Mécanique Théorique et Appliquée, Numéro Spécial, 1982, 23–44.Google Scholar
  9. 9.
    BOEHLER, J.P. and RACLIN J., Anisotropic Hardening of Prestrained Rolled Sheet-Steel. In: Current Advances in Mechanical Design and Production, Proc. 2 nd Cairo Un. MDP Conf., Cairo University, 1982, 483–492.Google Scholar
  10. 10.
    BOEHLER, J.P. and RACLIN J., A Unified Theoretical and Experimental Study of Anisotropic Hardening, Trans. 6th Int. Conf. on SMIRT,North-Holland, Amsterdam, 1982, Invited Lecture L3/2.Google Scholar
  11. 11.
    CHABOCHE, J.L., Le Concept de Contrainte Effective Appliqué à l’Elasticité et à la Viscosité en Présence d’un Endommagement Anisotrope. In: Mechanical Behavior of Anisotropic Solids, Proc. Euromech Coll. 115-CNRS Int. Coll. 295 (Villard-de-Lans, June 1979 ), (Ed. J.P. Boehler ), Editions du CNRS (Paris) and Martinus Nijhoff, The Hague. 1982, 737–760.Google Scholar
  12. 12.
    Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, Oxford, 1950.MATHGoogle Scholar
  13. 13.
    HODGE, P.G., Discussion on W. Prager Paper “A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids”, J. Appl. Mech., 24 (1957): 482–483.MathSciNetGoogle Scholar
  14. 14.
    KACHANOV, L. M., Time of Rupture Process under Creep Conditions, Izv. Akad. Nauk SSR Otd. Tekh. Nauk,8 (1958), 26-31 (in Russian).Google Scholar
  15. 15.
    LEMAITRE J. and CHABOCHE J.L., Aspect Phénoménologique de la Rupture par Endommagement, J. Mécanique Appliquée, 2 (3), 1978, 317–365.Google Scholar
  16. 16.
    MURAKAMI S. and OHNO N., A Continuum Theory of Creep and Creep Damage. In: Creep in Structures, Proc. IUTAM Symp. (Leicester, Sept. 1980 ), (Ed. A.R.S. Ponter and D.R. Hayhurst), Springer, Berlin, 1981, 422444.Google Scholar
  17. 17.
    MURAKAMI, S. and SAWCZUK A., On Description of Rate-Independent Behavior for Prestrained Solids, Arch. Mech., 32 (1979): 251–264.MathSciNetGoogle Scholar
  18. 18.
    PRAGER, W., A New Method of Analyzing Stresses and Strains in Work-hardening Plastic Solids, J. Appl. Mech., 23 (4) (1956): 493–496.MATHMathSciNetGoogle Scholar
  19. 19.
    REES, D.W.A., A Survey of Hardening in Metallic Materials. In: Failure Criteria of Structured Media, Proc. CNRS Int. Coll. 351 (Villard-de-Lans, June 1983), in press.Google Scholar
  20. 20.
    RIVLIN, R.S., Further Remarks on the Stress-Deformation Relations for Isotropic Materials, J. Rat. Mech. Anal. 4 (1955): 681–702.MATHMathSciNetGoogle Scholar
  21. 21.
    SPENCER, A.J.M., The Formulation of Constitutive Equations for Anisotropic Solids. In: Mechanical Behavior of Anisotropic Solids, Proc. Euromech. Coll. 115-CNRS Int. Coll. 295 (Villard-de-Lans, June 1979 ), (Ed. J.P. Boehler ), Editions du CNRS (Paris) and Martinus Nijhoff, The Hague, 1982, 3–26.CrossRefGoogle Scholar
  22. 22.
    SVENSSON, J.L., Anisotropy and the Bauschinger Effect in Cold Rolled Aluminium, J. Mech. Engng Sci., 8 (1966): 162–172.CrossRefGoogle Scholar
  23. 23.
    TOUATI A., Comportement Mécanique des Sols Pulvérulents sous Fortes Contraintes, Thèse de Docteur-Ingénieur, Ecole Nationale des Ponts et Chaussées, Paris, 1982.Google Scholar
  24. 24.
    YOSHIMURA, Y., Hypothetical Theory of Anisotropy and the Bauschinger Effet Due to Plastic Strain History, Aero. Res. Inst.,Tokyo University, 349 (1959): 224–246.Google Scholar
  25. 25.
    ZIEGLER, H., A Modification to Prager’s Hardening Rule, Q.J. Appl. Math., 17 (55), (1959): 55–65.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • J. P. Boehler
    • 1
  1. 1.University of GrenobleFrance

Personalised recommendations