Anisotropic Linear Elasticity

  • J. P. Boehler
Part of the International Centre for Mechanical Sciences book series (CISM, volume 292)


Consider a symmetric second order tensor T which is a function F of a symmetric second order tensor D. If F is a transversely isotropic function of D, its irreducible representation is obtained from Table IV of Chapter 3.


Irreducible Representation Classical Formulation Order Tensor Hyperelastic Material Linear Restriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BOEHLER, J.P., A Simple Derivation of Representations for Non-Polynomial Constitutive Equations in Some Cases of Anisotropy, ZAMM, 59 (1979): 157–167.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    BOEHLER, J.P., Sur les Formes Invariantes dans le Sous-Groupe Orthotrope de Révolution..., ZAMM, 55 (1975): 609–611.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    BOEHLER, J.P., Contributions Théoriques et Expérimentales à l’Etude des Milieux Plastiques Anisotropes, Thèse de Doctorat ès Sciences, Grenoble, 1975.Google Scholar
  4. 4.
    GOLDENBLAT, I.I., Some Problems of the Mechanics of Deformable Media, Noordhoff, Groningen, 1962.Google Scholar
  5. 5.
    LEHMANN, Th., Anisotrope Plastische Formänderungen, Rheol. Acta, 3 (1964): 281–285.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • J. P. Boehler
    • 1
  1. 1.University of GrenobleFrance

Personalised recommendations