Advertisement

Representations for Isotropic and Anisotropic Non-Polynomial Tensor Functions

  • J. P. Boehler
Part of the International Centre for Mechanical Sciences book series (CISM, volume 292)

Abstract

Material symmetries of a continuum impose definite restrictions on the form of constitutive relations. The restrictions are specified in the representations of isotropic and anisotropic tensor functions and indi­cate the type and the number of independent variables involved in a cons­titutive relation. Thus, in a properly written constitutive equation, the material symmetries are automatically verified.

Keywords

Constitutive Equation Irreducible Representation Structural Tensor Invariance Group Functional Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    WINEMAN, A.S. and PIPKIN, A.C., Material Symmetry Restrictions on Constitutive Equations, Arch. Rat. Mech. An., 17 (1964) : 184–214.Google Scholar
  2. 2.
    PIPKIN, A.C. and WINEMAN, A.S., Material Symmetry Restrictions on Non-Polynomial Constitutive Equations, Arch. Rat. Mech. An.,12 (1963) : 420–426.Google Scholar
  3. 3.
    SPENCER, A.J.M., Theory of Invariants, in Continuum Physics,ed. by C. Eringen, Academic Press, (1971) : 239–353.Google Scholar
  4. 4.
    WANG, C.C., On Representations for Isotropic Functions, Part I and II, Arch. Rat. Mech. An.,33 (1969) : 249-287.Google Scholar
  5. 5.
    WANG, C.C., A New Representation Theorem for Isotropic Functions, Part I and II, Arch. Rat. Mech. An.,36 (1970) : 166–223.Google Scholar
  6. 6.
    WANG, C.C.,Corrigendum, Arch. Rat. Mech. An.,43 (1971) : 392–395.Google Scholar
  7. 7.
    SMITH, G.F., On Isotropic Integrity Bases, Arch. Rat. Mech. An., 18 (1965) : 282–292.Google Scholar
  8. 8.
    SMITH, G.F., On a Fundamental Error in Two Papers of C.C. WANG, Arch. Rat. Mech. An.,36 (1970) : 161–165.Google Scholar
  9. 9.
    SMITH, G.F., On Isotropic Functions of Symmetric Tensors, Skew-Symmetric Tensors and Vectors, Int.J.Engng. Sci.,19 (1971) : 899–916.Google Scholar
  10. 10.
    RIVLIN, R.S. and ERICKSEN, J.L., Stress-Deformation Relations for Isotropic Materials, J. Rat. Mech. An.,4 (1955) : 323–425.Google Scholar
  11. 11.
    BOEHLER, J.P., On Irreducible Representations for Isotropic Scalar Functions, ZAMM,57 (1977) : 323–327.Google Scholar
  12. 12.
    BOEHLER, J.P.,Lois de Comportement Anisotrope des Milieux Continus, Journal de Mécanique,17,2 (1978) : 153–190.Google Scholar
  13. 13.
    BOEHLER, J.P., A Simple Derivation of Representations for Non-Polynomial Constitutive Equations in Some Cases of Anisotropy, ZAMM,59 (1979) : 157–167.Google Scholar
  14. 14.
    BOEHLER, J.P.,Functional Bases for Orthotropic and Transverse Isotropic Non-Polynomial Functions, (in preparation).Google Scholar
  15. 15.
    BOEHLER, J.P. and RACLIN, J.,Representations Irréductibles des Fonctions Tensorielles Anisotropes Non-Polynomiales de Deux Tenseurs Symétriques, Arch. Mech. Stos.,19,3 (1977) : 431–444.Google Scholar
  16. 16.
    ADKINS, J.E., Further Symmetry Relations for Transversely Isotropic Materials, Arch. Rat. Mech. An.,5 (1960) : 263–274.Google Scholar
  17. 17.
    ADKINS, J.E., Symmetry Relations for Orthotropic and Transversely Isotropic Materials, Arch. Rat. Mech. An.,4 (1960) : 193–213.Google Scholar
  18. 18.
    RIVLIN, R.S., Further Remarks on the Stress-Deformation Relations for Isotropic Materials, J. Rat. Mech. An.,4 (1955) : 681–702.Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • J. P. Boehler
    • 1
  1. 1.University of GrenobleFrance

Personalised recommendations