Interpolation Methos for Tensor Functions

  • J. Betten
Part of the International Centre for Mechanical Sciences book series (CISM, volume 292)


In this chapter polynomial interpolation is considered and extended to tensor-valued functions of one and two argument tensors. Let xα(α = 1,2,...,n) be distinct points and yα corresponding values. The polynomial of degree n-1
is called “LAGRANGE interpolation formula”, where the polynomials
are introduced. It is clear that Lα(xβ) is equal to one for α = β and equal to zero for α ≢ β. The remainder in (1) is given by
where min (x, x1,..., xn) < ξ < max (x, xl,..., xn).


Constitutive Equation Interpolation Method Coincident Point Tensor Function Integrity Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BETTEN, J., Interpolation Methods of Tensor Functions, Fourth International Conference on Mathematical Modelling, ETH-Zürich (Switzerland) 1983, published in the proceedings: Mathematical Modelling in Science and Technology (eds. X.J.R. Avula, R.E. Kalman, A.I. Liapis and E.Y. Rodin ), Pergamon Press, New York /…/ Frankfurt 1984, 52–57Google Scholar
  2. 2.
    BETTEN, J., Integrity Basis for a Second-Order and a Fourth-Order Tensor, International J. Math. and Math. Sci. 5 (1982): 87–96.CrossRefGoogle Scholar
  3. 3.
    BETTEN, J., Damage Tensors in Continuum Mechanics, Euromech Colloquium 147 on “Damage Mechanics”, Paris VI, Cachan 1981, published in: Journal de Mécanique théorique et appliquée 2 (1983): 13–32.Google Scholar
  4. 4.
    BETTEN, J., Net-Stress Analysis in Creep Mechanics, Ingenieur-Archiv 52 (1982): 405–419.CrossRefMATHGoogle Scholar
  5. 5.
    BETTEN, J., Elastizitäts-und Plastizitätslehre, Vieweg-Verlag, Braunschweig/Wiesbaden 1985.MATHGoogle Scholar
  6. 6.
    BETTEN, J., Elementare Tensorrechnung für Ingenieure, Vieweg-Verlag, Braunschweig 1977.CrossRefMATHGoogle Scholar
  7. 7.
    FITZGERALD, J.E., A tensorial Hencky Measure of Strain and Strain Rate for finite Deformations, J. Appl. Phys. 51 (1980): 5111–5115.CrossRefGoogle Scholar
  8. 8.
    RICHTER, H., Verzerrungstensor, Verzerrungsdeviator und Spannungstensor bei endlichen Formänderungen, Z. Angew. Math. Mech. (ZAHM) 29 (1949): 65–75.CrossRefMATHGoogle Scholar
  9. 9.
    SEDOV, L.I., Foundations of the Non-Linear Mechanics of Continua, Pergamon Press, Oxford /…/ Frankfurt 1966.MATHGoogle Scholar
  10. 10.
    LEHMANN, Th., Einige Bemerkungen zu einer allgemeinen Klasse von Stoffgesetzen für große elasto-plastische Formänderungen, Ingenieur-Archiv 41 (1972): 297–310.CrossRefMATHGoogle Scholar
  11. 11.
    BETTEN, J., On the Creep-Behaviour of an elastic-plastic thick-walled circular cylindrical Tube subjected to internal Pressure, International Symposium on Mechanics of inelastic Media and Structures, Warsaw 1978, published in: Mechanics of inelastic Media and Structures (eds. O. Mahrenhoítz and A. Sawczuk ), Polish Academy of Science, Warszawa/Poznan 1982, 51–72.Google Scholar
  12. 12.
    BETTEN, J., Zur Kriechaufweitung zylindrischer Hochdruckbehälter, Rheol. Acta 19 (1980): 517–524.Google Scholar
  13. 13.
    BETTEN, J., Zum Traglastverfahren bei nichtlinearem Stoffgesetz, Ingenieur-Archiv 44 (1975): 199–207.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    BETTEN, J., Applications of Tensor Functions to the Formulation of Constitutive Equations involving Damage and Initial Anisotropy, IUTAM-Symposium on Mechanics of Damage and Fatigue, Haifa and Tel Aviv 1985, to be published in the proceedings (eds. S.R. Bodner and Z. Hashin).Google Scholar
  15. 15.
    LECKIE; F.A. and HAYHURST, D.R., Constitutive Equations for Creep Rupture, Acta Metallurgica 25 (1977): 1059–1070.CrossRefGoogle Scholar
  16. 16.
    ODQUIST, F.K.G. and HULT, J., Kriechfestigkeit metallischer Werkstoffe, Springer-Verlag, Berlin/Göttingen/Heidelberg 1962.CrossRefGoogle Scholar
  17. 17.
    BETTEN, J., Tensorielle Verallgemeinerung einachsiger Stoffgesetze, Z. Angew. Math. Mech. (ZAHM) 66 (1986), in press.Google Scholar
  18. 18.
    RAMBERG, W. and OSGOOD, W.R., Description of Stress-Strain Curves by three Parameters, NACA Technical Note No. 902, July 1943.Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • J. Betten
    • 1
  1. 1.Technical University AachenF.R. Germany

Personalised recommendations