Invariants of Fourth-Order Tensors

  • J. Betten
Part of the International Centre for Mechanical Sciences book series (CISM, volume 292)


In solid mechanics representing scalar-valued tensor functions or second-order tensor-valued tensor functions is of major concern. For instance, the plastic potential is scalar-valued, whereas constitutive equations are tensor-valued.


LAGRANGE Multiplier Method Integrity Basis Elementary Symmetric Function Isotropic Tensor Crystal Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    GRACE, J.H. and YOUNG, A., The Algebra of Invariants, Cambridge Univ. Press. London and New York 1903.Google Scholar
  2. 2.
    GUREVICH, G.B., Foundations of the Theory of Algebraic Invariants, P. Noordhoff, Groningen 1964.Google Scholar
  3. 3.
    RIVLIN, R.S., An Introduction to Non-linear Continuum Mechanics, in: Non-linear Continuum Theories in Mechanics and Physics and their applications (Ed. R.S. Rivlin ), Edizioni Cremonese, Rome 1970.Google Scholar
  4. 4.
    SCHUR, I., Vorlesungen über Invariantentheorie, bearbeitet und herausgegeben von H. Grunsky, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 143, Springer-Verlag, Berlin/Heidelberg/New York 1968.Google Scholar
  5. 5.
    WEITZENBÖCK, R., Invariantentheorie, P. Noordhoff, Groningen 1923.Google Scholar
  6. 6.
    WEYL, H., The Classical Groups, Their Invariants and Representation, Princeton Univ. Press, Princeton and New Jersey 1946.Google Scholar
  7. 7.
    SPENCER, A.J.M., Theory of Invariants, in: Continuum Physics (ed. A.C. Eringen ), Academic Press, New York 1971, 239–353.Google Scholar
  8. 8.
    TRUESDELL, C. and NOLL, W., The Non-Linear Field Theories of Mechanics, in: Handbuch der Physik (Ed. S. Flügge), Vol. III/3, Springer-Verlag, Berlin/Heidelberg/New York 1965.Google Scholar
  9. 9.
    BETTEN; J., Ein Beitrag zur Invariantentheorie in der Plastomechanik anisotroper Stoffe, Z. Angew. Math. Mech. (ZAMM), 56 (1976), 557–559Google Scholar
  10. 10.
    BETTEN, J., Theory of Invariants in Creep Mechanics of Anisotropic Solids (Ed. J.P. Boehler ), Martinus Nijhoff Publishers, The Hague/ Boston/London 1982, 65–80.Google Scholar
  11. 11.
    BETTEN, J., Creep Theory of Anisotropic Solids, Journal of Rheology, 25 (1981), 565–581.CrossRefMATHGoogle Scholar
  12. 12.
    SPENCER, A.J.M. and RIVLIN, R.S., The Theory of Matrix Polynomials and its Application to the Mechanics of Isotropic Continua, Arch. Rational Mech. Anal. 2 (1958/59), 309–336.Google Scholar
  13. 13.
    SMITH, G.F., On the Yield Condition for Anisotropie Materials, Quart. Appl. Math. 20 (1962), 241–247.MATHGoogle Scholar
  14. 14.
    PIPKIN, A.C. and RIVLIN, R.S., The Formulation of Constitutive Equations in Continuum Physics, Arch. Rational Mech. Anal. 4 (1959), 129–144.MATHMathSciNetGoogle Scholar
  15. 15.
    PIPKIN, A.C. and WINEMAN, A.S., Material Symmetry Restrictions on Non-Polynomial Constitutive Equations, Arch. Rational Mech. Anal. 12 (1963), 420–426.MATHMathSciNetGoogle Scholar
  16. 16.
    BETTEN, J., Elementare Tensorrechnung für Ingenieure, Vieweg-Verlag, Braunschweig 1977.CrossRefMATHGoogle Scholar
  17. 17.
    WINEMAN, A.S. and PIPKIN, A.C., Material Symmetry Restrictions on Constitutive Equations, Arch. Rational Mech. Anal. 17 (1964), 1842 14Google Scholar
  18. 18.
    SMITH, G.F., SMITH, M.M. and RIVLIN, R.S., Integrity Bases for a Symmetric Tensor and a Vector–The Crystal Classes, Arch. Rational Mech. Anal. 12 (1963), 93–133.MATHMathSciNetGoogle Scholar
  19. 19.
    BETTEN, J., Integrity Basis for a Second-Order and a Fourth-Order Tensor, Internat. J. Math. & Math. Sci. 5 (1982), 87–96.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    RIVLIN, R.S. and SMITH, G.F., Orthogonal Integrity Basis for N Symmetric Matrices, in: Contributions to Mechanics (Ed. D. Abir ), Pergamon Press, Oxford/…/Braunschweig 1969, 121–141.CrossRefGoogle Scholar
  21. 21.
    BETTEN, J., Zur Anstellung von Stoffgleichungen in der Kriechmechanik anisotroper Körper, Rheol. Acta 20 (1981), 527–535.MATHMathSciNetGoogle Scholar
  22. 22.
    BETTEN, J., Elastizitäts-und Plastizitätslehre, Vieweg-Verlag, Braunschweig/Wiesbaden 1985.MATHGoogle Scholar
  23. 23.
    BETTEN, Berkeley 1985, to be published in the proceedings: Mathematical Modelling in Science and Technology (eds. X.J.R. Avula, G. Leitmann, C.D. Mote, Jr. and E.Y. Rodin), Pergamon Press, New York 1986.Google Scholar
  24. 24.
    BETTEN, J., Representation of Constitutive Equations in Creep Mechanics of Isotropic and Anisotropic Materials, in: Creep in Structures (Ed. A.R.S. Ponter and D.R. Hayhurst ), Springer-Verlag, Berlin/Heidelberg/New York 1981, 179–201.CrossRefGoogle Scholar
  25. 25.
    BETTEN, J., Pressure-dependent Yield Behaviour of Isotropic and An-isotropic Materials, IUTAM-Symposium on Deformation and Failure of Granular Materials, Delft 1982, published in the proceedings (eds. P.A. Vermeer and H.J. Luger ), A.A. Balkema, Rotterdam 1982, 81–89.Google Scholar
  26. 26.
    BETTEN, J., Formulation of Failure Criteria for Anisotropic Materials under Multi-Axial States of Stress, Colloque International du CNRS n° 351 on Failure Criteria of Structured Media, Grenoble 1983, to be published in the proceedings (ed. J.P. Boehler).Google Scholar
  27. 27.
    BETTEN, J., The Eigenvalue Problem of a Fourth-Order Tensor, in preparation.Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • J. Betten
    • 1
  1. 1.Technical University AachenF.R. Germany

Personalised recommendations