Calculation of Loads Transmitted at the Anatomical Joints

  • N. Berme
  • G. Heydinger
  • A. Cappozzo
Part of the International Centre for Mechanical Sciences book series (CISM, volume 291)


At present there exists no practical method to directly measure the loads acting on the structures associated with in-vivo anatomical joints. These loads must be estimated from a knowledge of the resultant intersegmental loading at the joint. With the resultant loading at the joint known, a mathematical model of the joint system can be devised in an attempt to predict the loads acting on the associated muscles, ligaments, and joint surfaces.


Muscle Force Body Segment Elbow Joint Joint Model Joint Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kinzel, G.L., Hall, A.S., Jr. and B.M. Hillberry, Measurement of the Total Motion between Two Body Segments-I. Analytical Development. J. Biomechanics, 5, 93, 1972.CrossRefGoogle Scholar
  2. 2.
    Panjabi, M.M., Krag, M.M., and V.K. Goel, A Technique of Measurement and Description of Three-Dimensional Six Degrees-of-Freedom Motion of a Body Joint with an Application of the Human Spine, J. Biomechanics, 14, 447, 1981.CrossRefGoogle Scholar
  3. 3.
    Braune, C.W., Fisher, O., and Der Gang des Menschen I., Abb. Math. Phys. Cl. Kon. Sachs. Ges. Wissensch, 21, 151, 1895.Google Scholar
  4. 4.
    Bernstein, N.A. The Coordination and Regulation of Movements, Pergamon Press Ltd., 1967.Google Scholar
  5. 5.
    Marey, E.J. La Methode Graphique dans les Sciences Experimentales, 2nd edition with supplement, Le Development de las Methode Graphique par la Photographie, G. Masson, Paris, 1885.Google Scholar
  6. 6.
    Cappozzo, A. Strereophotogrammetric System for Kinesiological Studies, Med. and Biol. Eng. and Comput. 21, 217, 1983.CrossRefGoogle Scholar
  7. 7.
    Wyss, U.P. and Pollak, V.A., Kinematic Data Acquisition System for Two or Three-Dimensional Motion Analysis, Med. and Biol. Eng. and Comput., 19, p , 1981.Google Scholar
  8. 8.
    Morasso, P. and Tagliasco, V., Analysis of Human Movements: Spatial Localization with Multiple Perspective Views, Med. and Biol. Engng. and Comput., 21, 74, 1983.CrossRefGoogle Scholar
  9. 9.
    Taylor, K.D., Mottier, F.M., Simmons, D.W., Cohen, W., Pavlack Jr., R., Cornell, P., and Haukins, G.B, An Automated Motion Measurement System for Clinical Gait Analysis, J. Biomechanics, 15, 505, 1982.CrossRefGoogle Scholar
  10. 10.
    Winter, D.A., Greenlaw, R.K., and Hobson, D.A., Television-Computer Analysis of Kinematics of Human Gait, Comp. Biomed. Res., 5, 1972.Google Scholar
  11. 11.
    Jarrett, M.O., Andrews, B.J., and Paul, J.P., Quantitative Analysis of Locomotion Using Television, Proc. of ISPO World Congress, Montreaux, Switzerland, 1974.Google Scholar
  12. 12.
    Lindholm, L.E, An Optoelectronic Instrument for Remote On-Line Movement Monitoring, Biomechanics, IV, Nelson, R.C. and Morehouse, C.A., Eds., University Park Press, Baltimore, 510, 1974.Google Scholar
  13. 13.
    Leo, T. and Macellari, V., On Line Microcomputer System for Gait Analysis Data Acquisition Based on Commercially Available Optoelectronic Devices, in Biomechanics VII-B, Morecki, A., Fidelus, K., Kedzior, K. and Wit, A., Eds., University Park Press, Baltimore, 1981, 163.Google Scholar
  14. 14.
    Macellari, V. CoSTEL: A Computer Peripheral Remote Sensing Device for 3-Dimensional Monitoring of Human Motion, Med. and Biol. Engng. and Comp., 21, 311, 1983.CrossRefGoogle Scholar
  15. 15.
    de Lange, A., van Dijk, R., Huiskes, R., Selvik, G., and van Rens, Th. J.G., The Application of Roentgenstereophotogrammetry for Evaluation of Knee-Joint Kinematics in Vitro, Biomechanics; Principles and Applications, Huiskes, R., Van Campen, D., and De Wijn, J., Eds., Martinus Nijhoff Publishers, The Hague, 1982, 177.Google Scholar
  16. 16.
    Ayoub, M.A., Ayoub, M.M. and J.D. Ramsey. A Stereometric System for Measuring Human Motion, Human Factors, 12, 523, 1970.Google Scholar
  17. 17.
    Woltring, H.J. Calibration and Measurement in 3-D Monitoring of Human Motion. II: Experimental Results and Discussion, Biotelemetry, 3, 65, 1976.Google Scholar
  18. 18.
    Shapiro, R, The Direct Linear Transformation Method for Three-Dimensional Cinematography, Res.Q., 49, 197, 1978.Google Scholar
  19. 19.
    Andriacchi, T.P., Hampton, S.J., Shultz, A.B., and Galante, J.O., Three Dimensional Coordinate Data Processing in Human Motion Analysis, J. Biomech. Engng., 101, 279, 1979.CrossRefGoogle Scholar
  20. 20.
    Dapena, J., Harman, E.A., and Miller, J.A., Three Dimensional Cinematography with Control Object of Unknown Shape, J. Biomechanics, 15, 11, 1982.CrossRefGoogle Scholar
  21. 21.
    Miller, N.R., Shapiro, R., and McLaughlin, T.M., A Technique for Obtaining Spatial Kinematic Parameters of Segments of Biomechanical Systems from Cinematographic Data, J. Biomechanics, 13, 535, 1980.CrossRefGoogle Scholar
  22. 22.
    Gosh, S.K. Analytical Photogrammetry. Pergamon Press Ltd., New York, 1979.Google Scholar
  23. 23.
    Abdel-Aziz, Y.I. and Karara, H.M., Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close Range Photogrammetry, Proceedings of the ASP/UI Symposium on Close Range Photogrammetry, Urbana, Illinois, 1971.Google Scholar
  24. 24.
    Marzan, T. and Karara, H.M., A Computer Program for Direct Linear Transformation of the Colinearity Condition and some Applications of it. Symposium on Close Range Photogrammetric Systems, American Society of Photogrammetry, Falls Church, 420, 1975.Google Scholar
  25. 25.
    Kenefick, J.F., Gyer, M.S., and Harp, B.F., Analytical Self-calibration, Photogramm. Engng., 38, 1117, 1972.Google Scholar
  26. 26.
    Woltring, H.J. Planar Control in Multi-Camera Calibration for 3-D Gait Studies, J. Biomechanics, 13, 39, 1980.CrossRefGoogle Scholar
  27. 27.
    Mitchelson, D., Recording of Movement Without Photography, Techniques for the Analysis of Human Movement, Grieve, D.W., Miller, D., Mitchelson, D., Paul, J.P., and Smith, A.J., Eds., Lepus Books: London, 1975.Google Scholar
  28. 28.
    Brumbaugh, R.B., Crowninshield, R.D., Blair, W.F. and Andrews, J.G., An In-vivo Study of Normal Wrist Kinematics, J. Biomech. Engng., 104, 176, 1982.CrossRefGoogle Scholar
  29. 29.
    Hennig, E.M. and Nicol, K., Velocity Measurement without Contact on Body Surface Points by Means of the Acoustical Doppler Effect, Biomechanics V-B, Komi, P.V., Ed., University Park Press, Baltimore, 1976, 449.Google Scholar
  30. 30.
    Chao, E.Y., Justification of Triaxial Goniometer for the Measurement of Joint Rotation, J. Biomechanics, 13, 989, 1980.CrossRefGoogle Scholar
  31. 31.
    Johnston, R.C. and Smidt, G.L., Measurement of Hip Joint Motion during Walking, Evaluation of an Electrogoniometric Method, J. Bone Jnt. Surg., 51A, 1083, 1969.Google Scholar
  32. 32.
    Lamoreux, L.W. Kinematic Measurements in the Study of Human Walking, Bulletin of Prosthetic Research, BPR-10–15, 3, 1971.Google Scholar
  33. 33.
    Townsend, M.A., Izak, M, and Jackson, R.W., Total Motion Knee Goniometry, J. Biomechanics, 10, 183, 1977.CrossRefGoogle Scholar
  34. 34.
    Kinzel, G.L., Hillberry, B.M., Hall, A.S., Jr., Van Sickle, D.C., and Harvey, W.M., Measurement of the Total Motion between Two Body Segments-II, Description of Application, J. Biomechanics, 5, 283, 1972.CrossRefGoogle Scholar
  35. 35.
    Morris, J.R.W., Accelerometry — A Technique for the Measurement of Human Body Movements, J. Biomechanics, 6, 729, 1973.CrossRefGoogle Scholar
  36. 36.
    Light, L.H., McLellan, G. and Klenerman, L., Skeletal Transients on Hell Strike in Normal Walking with Different Footwear, J. Biomechanics, 13, 477, 1980.CrossRefGoogle Scholar
  37. 37.
    Dempster, W.T., Space Requirements of the Seated Operator, WADC Technical Report, Wright-Patterson AFB, Ohio, 55, 1955.Google Scholar
  38. 38.
    Clauser, C.E., McConville, and Young, J.T., Weight, Volume and Centre of Mass of Segments of the Human Body. Report No. AMRL-TR-69–70, Wright-Patterson AFB,- Ohio, 1969.Google Scholar
  39. 39.
    Chandler, R.F., Clauser, CE., McConville, J.T., Reynolds, H.M. and Young, J.W., Investigation of Inertial Properties of the Human Body, Report No. AMRL-TR-74–137, Wright-Patterson AFB, Ohio, 1975.Google Scholar
  40. 40.
    Liu, Y.K. and Wickstrom, J.K., Estimation of the Inertial Property Distribution of the Human Torso from Segmented Cadaveric Data, Perspectives in Biomedical Engineering, Kenedi, R.M., Ed., MacMillan Press, London, 1973, 203–213.Google Scholar
  41. 41.
    Fisher, O., Der Gang des Menschen, Abh, Math. Phys. Cl. Kon. Sachs. Ges. Wissensch, II-25, 1900, 1, III-26, 1901, 85, IV-26, 1901, 469, V-28, 1904, 319, VI-28, 1904, 531.Google Scholar
  42. 42.
    Barter, J.T. Estimation of the Mass of Body Segments, WADC Technical Report 57–260, Wright-Patterson Air Force Base, Ohio, 1957.Google Scholar
  43. 43.
    Zatsiorsky, V. and Seluyanov, V., The Gamma Mass Scanning Technique for Inertial Anthropometric Measurement, J. Biomechanics (in press)Google Scholar
  44. 44.
    Drillis, R.J. and Contini, R., Body Segment Parameters, Technical Report No. 1166.03, School of Engineering and Science, New York Univ., 1966.Google Scholar
  45. 45.
    Hanavan, E.P., A Mathematical Model of the Human Body, Report No. AMRL-TR-102, Wright-rPatterson AFB, Ohio, 1964.Google Scholar
  46. 46.
    Jensen, R.K., Estimation of the Biomechanical Properties of Three Body Types Using a Photogrammetric Method, J. Biomechanics, 11, 349,. 1978.CrossRefGoogle Scholar
  47. 47.
    Hatze, H., A Mathematical Model for the Computational Determination of Parameter Values of Anthropomorphic Segments, J. Biomechanics, 13, 833, 1980.CrossRefGoogle Scholar
  48. 48.
    Miller, D.J. and Morrison, W.E., Prediction of Segmental Parameters Using the Hanavan Human Body Model, Med. Sci. Sports, 7, 207, 1975.Google Scholar
  49. 49.
    Cappozzo, A, The Forces and Couples in the Human Trunk during’ Level Walking, J. Biomechanics, 16, 265, 1983.CrossRefGoogle Scholar
  50. 50.
    Vaughan, C.L., Andrews, J.G. and Hay, J.G., Selection of Body Segment Parameters by Optimization Methods, J. Biomech. Engng., 104, 38, 1982.CrossRefGoogle Scholar
  51. 51.
    Cappozzo, A., Leo, T. and Pedotti, A., A General Computing Method for the Analysis of Human Locomotion, J. Biomechanics, 8, 307, 1975.CrossRefGoogle Scholar
  52. 52.
    Andrews, B. and Jones, D., A Note on the Differentiation of Human Kinematic Data, Dib. 11th Internat. Conf. on Medical and Biological Engng. Ottawa, 88, 1976.Google Scholar
  53. 53.
    Lanshammar, H., On Practical Evaluation of Differentiation Techniques for Human Gait Analysis, J. Biomechanics, 15, 99., 1982.CrossRefGoogle Scholar
  54. 54.
    Cappozzo, A., Leo, T. and Macellari, V., The CoSTEL Kinematics Monitoring System: Performance and Use in Human Movement Measurements, Biomechanics VIII-A., Matsui, H., and Kobayashi, K., Eds., Human Kinetics Pub, Champaign, 1982.Google Scholar
  55. 55.
    Plagenhoef, S.C., Computer Programs for Obtaining Kinetic Data on Human Movements, J. Biomechanics, 1, 221, 1968.CrossRefGoogle Scholar
  56. 56.
    Dierckx, P., An Algorithm for Smoothing, Differentiation and Integration of Experimental Data Using Spline Functions, J. Comp. Appl. Nat., 1, 165, 1975.MATHMathSciNetGoogle Scholar
  57. 57.
    Wood, G.A. and Jennings, L.S., On the Use of Spline Functions for Data Smoothing, J. Biomechanics, 12, 477, 1979.CrossRefGoogle Scholar
  58. 53.
    Jackson, M.K., Fitting of Mathematical Functions to Biomechanical Data, IEEE Trans. Biomed. Eng., BME-26 2, 122, 1979.CrossRefGoogle Scholar
  59. 59.
    Winter, D.A., Sidwall, H.G. and Hobson, D.A., Measurements and Reduction of Noise in Kinematics of Locomotion, J. Biomechanics, 7, 157, 1974.CrossRefGoogle Scholar
  60. 60.
    Gustafsson, L. and Lanshammar, H., ENOCH An Integrated System for Measurement and Analysis of Human Gait, Institute of Technology, Uppsala University, S-751–21, Uppsala, Sweden, 1977.Google Scholar
  61. 61.
    Lesh, M.D., Mansour, J.M. and Simon, S.R., A Gait Analysis Subsystem for Smoothing and Differentiation of Human Motion Data, J. Biomech. Eng., Trans. ASME, 101, 205, 1979,CrossRefGoogle Scholar
  62. 62.
    McClellan, J.H., Parks, T.W., and Rabiner, L.R., A Computer Program for Designing Optimum FIR Linear Phase Filters, Audio Electroac, IEEE Tran. AU-21, 506, 1973.CrossRefGoogle Scholar
  63. 63.
    Andrews, B., Cappozzo, A. and Gazzani, F., A Quantitative Method for Assessment of Differentiation Techniques Used for Locomotion Analysis, Computing in Medicine, Paul, J.P., Ferguson-Pell, M.W., Jordan, M.M., and Andrews, B.J., Eds, The MacMillan Press, London, 146, 1982.Google Scholar
  64. 64.
    Hamming, R.W., Digital Filters, Englewood Cliffs, Prentics Hall, 1977.Google Scholar
  65. 65.
    Anderssen, R.S. and Bloomfield, P., Numerical Differentiation Procedures for Non-Exact Data, Numer. Math., 22, 157, 1974.CrossRefMATHMathSciNetGoogle Scholar
  66. 66.
    Hatze, H., The Use of Optimally Regularized Fourier Series for Estinating Higher-Order Derivatives of Noisy Biomechanical Data, J. Biomechanics, 14, 13, 1981.CrossRefGoogle Scholar
  67. 67.
    An, K.N., Hui, F.C., Morrey, B.F., Linscheid, R., and Chao, E. Muscles Across the Elbow Joint: A Biomechanical Analysis, J. Biomechanics, 14, 659, 1981.CrossRefGoogle Scholar
  68. 68.
    Morrison, J.B. The Forces Transmitted by the Human Knee Joint During Activity, Ph.D. Dissertation, University of Strathclyde, Glasgow, 1967.Google Scholar
  69. 69.
    Morrison, J.B., Bioengineering Analysis of Force Actions Transmitted by the Knee Joint, Biomed. Eng., 4, 164, 1968.Google Scholar
  70. 70.
    Paul, J.P., Bio-Engineering Studies of the Forces Transmitted by Joints: I. Engineering Analysis, Biomechanics and Related Bio-Engineering Topics, Kenedi, R.M., Ed., Pergamon Press, Oxford, 1965, 369.Google Scholar
  71. 71.
    Paul, J.P., Forces Transmitted by Joints in the Human Body, Proc. Inst. Mech. Eng. 31, 1967, 181.Google Scholar
  72. 72.
    Paul, J.P., and Poulson, J., The Analysis of Forces Transmitted by Joints in the Human Body, Proc. Int. Conf. Exper, Stress Anal., Udine, Italy, 1974.Google Scholar
  73. 73.
    Heydinger, G.J., Upper Limb Joint External Force and Moment Determination and Resultant Elbow Joint Force Prediction, Masters Thesis, Ohio State University, Columbus, 1985.Google Scholar
  74. 74.
    Toft, R. and Berme, N. A Biomechanical Analysis of the Joints of the Thumb, J. Biomechanics, 13, 353, 1980.CrossRefGoogle Scholar
  75. 75.
    Berme, N., Nicol, A.C., and Pual, J.P. A Biomechanical Analysis of Elbow Joint Function, I. Mech. Eng., 46, 1977.Google Scholar
  76. 76.
    Berme, N., Paul, J., and Purves, W, Biomedical Analysis of the Metacarpophalangeal Joint, J. Biomechanics, 10, 405, 1977.Google Scholar
  77. 77.
    Cnockaert, J.C., Lensel, G. and Pertuzon, E., Relative Contribution of Individual Muscles to the Isometric Contraction of a Muscle Group, J. Biomechanics, 8, 387, 1975,Google Scholar
  78. 78.
    Chao, E.Y., Apgrande, J.O., and Axmear, F.E., Three-Dimensional Force Analysis of Finger Joints in Selected Isometric Hand Functions, J. Biomechanics, 9, 387, 1976.CrossRefGoogle Scholar
  79. 79.
    An, K.N., Kwak, B.M., Chao, E.Y., and Morrey, B.F., Determination of Muscle and Joint Forces: A New Technique to Solve the Indeterminate Problem, Transactions of the ASME 106, 364, 1984.Google Scholar
  80. 80.
    Basmajian, J.V. and Latif, A, Integrated Actions and Functions of Chief Flexors of the Elbow, J. Bona Jt. Surg., 39-A, 1957.Google Scholar
  81. 81.
    Stormont, T.J., An, K.N, Morrey, B.F., and Chao, E.Y., Elbow Joint Contact Study: Comparison of Techniques, J. Biomechanics, 18, 329, 1985.CrossRefGoogle Scholar
  82. 82.
    Pauwels, F. Biomechanics of the Locomotor Apparatus, Springer-Verlag, Heidelberg, New York, 1980.CrossRefGoogle Scholar
  83. 83.
    Amis, A.A., Dowson, D., and Wright, V., Elbow Joint Force Predictions for Some Strenuous Isometric Actions, J., Biomechanics, 13, 765, 1980.CrossRefGoogle Scholar
  84. 84.
    Hui, F.C., Chao, E.Y., and An, K.N., Muscle of Joint Forces at the Elbow Joint During Isometric Lifting, Transactions of the 24th Annual Meeting of Orthopaedic Research Society, 3, 167, 1978.Google Scholar
  85. 85.
    Ikai, M. and Fukunaga, T.R., Calculation of Muscle Strength Per Unit Cross-Sectional Area of Human Muscle by Means of Ultrasonci Measurements, Int. Z. Angewandte Physiol, 26, 26, 1968.Google Scholar
  86. 86.
    Simpson, D., An Examination of the Design of an Endoprochesis for the Elbow, M.Sc. Thesis, University of Strathclyde, Glasgow 1975.Google Scholar
  87. 87.
    Nicol, A.C., Berme, N., and Paul, J.P., A Biomechanical Analysis of Elbow Joint Function, I. Mech. Engr., 45, 1977.Google Scholar
  88. 88.
    Bankov, S., and Jorgensen, K., Maximum Strength of Elbow Flexors; with Pronated and Supinated Forearm, Communications from the Danish National Association for Infantile Paralysis, 29, 1969.Google Scholar
  89. 89.
    Penrod, D.D., Davy, D.T., and Singh, D.P., An Optimization Approach to Tendon Force Analysis, J. Biomechanics, 7, 123, 1974.CrossRefGoogle Scholar
  90. 90.
    Yeo, B.P., Investigations Concerning the Principle of Minimal Total Muscular Force, J. Biomechanics, 9, 413, 1976.CrossRefGoogle Scholar
  91. 91.
    Seireg, A. and Arvikar, R.J., The Prediction of Musclar Load Sharing and Joint Forces in the Lower Extremities During Walking, J. Biomechanics, 8, 89, 1975.CrossRefGoogle Scholar
  92. 92.
    Hardt, D.E., Determining Muscle Forces in the Leg During Normal Human Walking — An Application and Evaluation of Optimization Methods, Transactions of the ASME 100, 72, 1978.Google Scholar
  93. 93.
    Chao, E.Y. and An, K.N., Determination of Internal Forces in Human Hand, J. Eng. Mech. Div., 104, 255, 1978.Google Scholar
  94. 94.
    Crowninshield, R.D., Use of Optimization Techniques to Predict Muscle Forces, Transactions of the ASME 100, 88, 1978.Google Scholar
  95. 95.
    Pedotti, A., Krishnan, V.V., and Stark, L., Optimization of Muscle-Force Sequencing in Human Locomotion, Math. Bio. 38, 57, 1978.CrossRefGoogle Scholar
  96. 96.
    Patriarco, A.G., Mann, R.W., Simon, S.R., and Mansour, J.M., An Evaluation of the Approaches of Optimization Models in the Prediction of Muscle Forces During Human Gait, J. Biomechanics, 14, 513, 1981.CrossRefGoogle Scholar
  97. 97.
    Crowninshield, R.D. and Brand, R.A., A Physiologically Based Criterion of Muscle Force Prediction in Locomotion, J. Biomechanics, 14, 793, 1981.CrossRefGoogle Scholar
  98. 98.
    Fick, R., Handbuck der Anatomic des Menschen, Gustav Fischer Vol. 2, 1910.Google Scholar
  99. 99.
    Dons, B., Bollerup, K., Bonde Peterson, F., and Hancke, S. The Effect of Weight-lifting Exercise Related to Muscle Fiber Composition and Muscle Cross-sectional Area in Humans, Eur. J. Appl. Physiol., 40, 95, 1979.CrossRefGoogle Scholar
  100. 100.
    Cope, R. An Optimization Approach to the Understanding of Time-Varying Leg-Muscle Froces, Ph.D. Dissertation, Ohio State University, Columbus, Ohio, 1986.Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • N. Berme
    • 1
  • G. Heydinger
    • 1
  • A. Cappozzo
    • 2
  1. 1.The Ohio State UniversityColumbusUSA
  2. 2.Università degli Studi “La Sapienza”RomaItaly

Personalised recommendations