Continuous Damage of Brittle Solids

  • Jerzy Najar
Part of the International Centre for Mechanical Sciences book series (CISM, volume 295)


Some elastic solids fail not through macro — fracture or plastic flow, but rather through growth of micro — defects. Modelling of such processes occurs through theories of continuous damage mechanics. Thermodynamic aspects of one such theory are discussed in this paper, focussing on limitations of admissible processes, energy dissipation in a loading — unloading cycle and the number of cycles leading to failure.


Dissipation Energy Damage Development Damage Function Initial Damage Secant Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Krajcinovic, D., Continuum damage mechanics, Appl.Mech.Rev.,v. 37, no. 1, 1–6, 1984MathSciNetGoogle Scholar
  2. [2]
    Krajcinovic, D., Continuum damage mechanics, Mechanics Today, to be publishedGoogle Scholar
  3. [3]
    Herrmann, G., On energetics of interacting defects, Proc. 3rd Symposium on Energy Engineering Sciences,Conf.–8510176, held at the Pennsylvania State Univ., University Park, Pa., Oct. 8–10, 1985Google Scholar
  4. [4]
    Gyarmaty, I., Non - equilibrium thermodynamics. Field theory and variational principles, Springer - V., Berlin - Heidelberg - New York, 1970Google Scholar
  5. [5]
    Prigogine, I. Introduction to thermodynamics of irreversible processes, Springfield, 1955Google Scholar
  6. [6]
    Meixner, J., Reik, H.G., Thermodynamik der irreversiblen Prozesse, in: Handbook der Physik, Bd. 3, TI. 2, Springer - V., Berlin - Göttingen - Heidelberg, 1959Google Scholar
  7. [7]
    Kachanov, L.M., Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, v. 8, (1958), 26–31Google Scholar
  8. [8]
    Grady, D.E., Kipp, M.E., Continuum modelling of explosive fracture in oil shale, Rock Mech. Min. Sci. Geomech. Abstr., v. 17 (1980), 147–157CrossRefGoogle Scholar
  9. [9]
    Denkhaus, H.G., The load -deformation behaviour of rock in uni -axial compression, Rock Mechanics, Suppl. v. 2 (1973), 33–51Google Scholar
  10. [10]
    Walsh, J.B., The effects of cracks in the compressibility of rock, J. Geophys. Res., v. 70 (1965), 381–389ADSCrossRefMATHGoogle Scholar
  11. [11]
    Davison, L., Stevens, A.L., Thermomechanical constitution for spalling elastic bodies, J. Appl. Phys., v. 44 (1976), 93–106Google Scholar
  12. [12]
    Cherepanov, G.P., Mechanics of brittle fracture, Nauka Publ., Moscow, 1974 (in Russian)Google Scholar
  13. [13]
    Lippmann, H., Ductility caused by progressive formation of shear cracks, in: Three–dimensional constitutive relations and ductile fracture, ed. by S. Nemat–Nasser, N.–Holland Publ. Co., Amsterdam, 1981, pp. 389–404Google Scholar
  14. [14]
    Mroz, Z., Mathematical models of inelastic concrete behaviour, in: Inelasticity and non–linearity in structural concrete, ed. by Cohn, M.Z., Univ. Waterloo Press, 1972, pp. 47–72Google Scholar
  15. [15]
    Ziegler, H., Some extremum principles in irreversible thermodynamics with applications to continuum mechanics, in: Progress in solid mechanics, v.IV, Ch.II, ed. by Sneddon, I. N., Hill, R., N. -Holland Publ. Co., Amsterdam, 1963Google Scholar
  16. [16]
    Chaboche, J. - L., Lemaitre, J., Mecanique des materiaux solides, Dunod, Paris, 1985Google Scholar
  17. [17]
    Krajcinovic, D., Ilankamban, R., Mechanics of solids with defective microstructure, J. Struct. Mech., v. 13 (1985), 267–282CrossRefGoogle Scholar
  18. [18]
    Lippmann, H., Mechanik des plastischen Fließens, Springer - V., Berlin - Heidelberg - N.York, 1981CrossRefMATHGoogle Scholar
  19. [19]
    Budiansky, B., O’Connell, R., Elastic moduli of a cracked solid, Int. J. Solids Structures, v. 12 (1976), 8’1–97Google Scholar
  20. [20]
    Kachanov, L.M., Introduction to continuum damage mechanics, M. Nijhoff Publ., Dordrecht, 1986CrossRefGoogle Scholar
  21. [21]
    Dems, K., Mroz, Z., Stability conditions for brittle–plastic structures with propagating damage surfaces, J. Struct. Mech., v. 13 (1985), 95–122CrossRefMathSciNetGoogle Scholar
  22. [22]
    Hogland, R.G., Hahn, G.T., Rosenfield, A.R., Influence of micro -structure on fracture propagation in rock, Rock Mechanics, v. 5 (1973), 77–106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • Jerzy Najar
    • 1
  1. 1.Department of Mechanics AUniversity of MunichGermany

Personalised recommendations