Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 295))

Abstract

The presented study focuses on the formulation of the damage models based on the actual mesostructural geometry and the kinetics of its irreversible changes. Assuming that the process is sufficiently well defined by the volume averages of the state and internal variables, the overall compliance tensor is derived using both Taylor’s and self-consistent approximations. The kinetic equations are derived from the hierarchy of toughnesses at the mesoscale in conjunction with the Griffith’s criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krajcinovic, D.: Continuum damage mechanics, to appear in Mechanics Today.

    Google Scholar 

  2. Lemaitre, J. and J.L. Chaboche: Aspect phenomenologique de la rupture par endommagement, J. de Mec. Applique, 2 (1978), 317–365.

    Google Scholar 

  3. Stroh, A.N.: A theory of fracture of metals, Advances in Physics, 6 (1957), 418–465.

    Article  ADS  Google Scholar 

  4. Wittmann, F.H.: Structure of concrete with respect to crack formation, in Fracture Mechanics of Concrete (Ed. F.H. Wittmann ), Elsevier, Amsterdam, 1983, 43–74.

    Google Scholar 

  5. Chudnovski, A.: Crack Layer Theory, Case Western Reserve Univ., NASA Contractor Report 174634, 1984.

    Google Scholar 

  6. Hoagland, R.H., G.T. Hahn and A.R. Rosenfield: Influence of microstructure on fracture propagation in rock, Rock Mechanics, 5 (1973), 77–106.

    Article  Google Scholar 

  7. Meyers, M.A.: Discussion of ‘Pressure—shear impact and the dynamic viscoplastic response of metals’ by R. W. Klopp, et al., Mech. of Mat., 4 (1985), 387–393.

    Article  Google Scholar 

  8. Budiansky, B. and R.J. O’Connell: Elastic moduli of a cracked solid, Int. J. Solids Struct., 12 (1976), 81–97.

    Article  MATH  Google Scholar 

  9. Kunin, I.A.: Elastic Media with Microstructure II, Springer Verlag, Berlin 1983.

    Book  MATH  Google Scholar 

  10. Mura, T.: Micromechanics of Defects in Solids, M. Nijhoff Publ., The Hague 1982.

    Book  Google Scholar 

  11. Delameter, W. and G. Herrmann: Weakening of elastic solids by doubly periodic arrays of cracks, in Topics in Applied Mechanics (Eds., J.L. Zeman and F. Ziegler ), Springer Verlag, Berlin 1974, 156–173.

    Google Scholar 

  12. Margolin, L.G.: Elastic moduli of a cracked body, Int. J. of Fracture, 22 (1983), 65–79.

    Article  Google Scholar 

  13. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Royal Soc., A241 (1957), 376–396.

    MATH  MathSciNet  Google Scholar 

  14. Hoenig, A.: The behavior of a flat elliptical crack in an anisotropie body, Int. J. Solids Struct., 14 (1978), 925–934.

    Article  MATH  Google Scholar 

  15. Wu, C.H.: Tension-compression test of a concrete specimen via damage theory, in Damage Mechanics and Continuum Modeling (Eds., N. Stubbs, D. Krajcinovic ), ASCE Publ., New York, 1985, 1–12.

    Google Scholar 

  16. Fanella, D.A.: A Micromechanical Continuous Damage Model for Plain Concrete, Ph. D. Thesis, Univ. of Illinois at Chicago, 1986.

    Google Scholar 

  17. Kanninen, M.F. and C.H. Popelar: Advanced Fracture Mechanics, Oxford Univ. Press, New York 1985.

    Google Scholar 

  18. Kachanov, L.M.: On the creep rupture time, Izv. AN SSSR, Otd. Tekhn. Nauk, 8 (1958), 26–31.

    Google Scholar 

  19. Krajcinovie, D.: Continuous damage mechanics, Applied Mech. Rev., 37 (1984), 1–6.

    Google Scholar 

  20. Horii, H. and S. Nemat-Nasser: Overall moduli of solids with microcracks: load induced anisotropy, J. Mech. Phys. Solids, 31 (1983), 155–171.

    Article  ADS  MATH  Google Scholar 

  21. Kanaun, S.R.: A random crack field in an elastic continuum, Isled. po Uprug. i Plast., 10 (1974), 66–83.

    Google Scholar 

  22. Kachanov, M.: Elastic solids with many cracks: a simple method of analysis, to appear in Int. J. Solids Struct.

    Google Scholar 

  23. Kachanov, M.: A microcrack model of rock inelasticity–Part I, Mech. of Materials, 1 (1982), 19–27.

    Article  Google Scholar 

  24. Krajcinovic, D. and D. Fanella: A micromechanical model for concrete, to appear in Eng. Fracture Mech.

    Google Scholar 

  25. Ashby, M.F.: Micromechanics of fracture in static and cyclic failure, in Fracture Mechanics (Ed: R.A. Smith ), Pergamon Press, Oxford 1979, 1–27.

    Chapter  Google Scholar 

  26. Broek, D.: Elementary Engineering Fracture Mechanics, Si j thoff and Noordhoff Publ., The Netherlands, 1978.

    MATH  Google Scholar 

  27. Holcomb, D.J.: Using acoustic emissions to determine in-situ stress: problems and promise, in Geomechanics - AMD Vol. 57 (Ed: S. Nemat-Nasser ), ASME 1983.

    Google Scholar 

  28. Holcomb, D.J. and L.S. Costin: Detecting damage surfaces in brittle materials using acoustic emissions, to appear in J. Appl. Mech.

    Google Scholar 

  29. Sih, G.C., P.C. Paris and G.R. Irwin: On cracks in rectilinearly anisotropie bodies, Int. J. Fraet. Mech., 1 (1965), 189–203.

    Google Scholar 

  30. Lekhnitski, S.G.: Theory of Elasticity of an Anisotropie Body, Mir Publ., Moscow 1981.

    Google Scholar 

  31. Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids, 15 (1967), 79–95.

    Article  ADS  Google Scholar 

  32. Lemaitre, J. and J.L. Chaboche: Mecanique des Materiaux Solides, Dunod, Paris 1985.

    Google Scholar 

  33. Krajeinovic, D.: Continuum damage mechanics revisited: basic concepts and definitions, J. Appl. Mech., 52 (1985), 829–834.

    Article  ADS  Google Scholar 

  34. Jansson, S. and U. Stigh: Influence of cavity shape on damage parameter, J. Appl. Mech., 52 (1985), 609–614.

    Article  ADS  Google Scholar 

  35. Huit, J.: Effect of voids on creep rate and strength, in Damage Mechanics and Continuum Modeling (Eds., N. Stubbs and D. Krajcinovic ), ASCE Publ., New York 1985, 13–24.

    Google Scholar 

  36. Rudnicki, J.W.: The inception of faulting in a rock mass with a weakened zone, J. Geophys. Res., 82 (1977), 844–854.

    Article  ADS  Google Scholar 

  37. Rudnicki, J.W. and J.R. Rice: Conditions for the localization of deformation in pressure—sensitive dilatant materials, J. Mech. Phys. Solids, 23 (1975), 371–394.

    Article  ADS  Google Scholar 

  38. Tetelman, A.S. and A.J. McEvily, Jr.: Fracture of Structural Materials, J. Wiley and Sons, New York 1967.

    Google Scholar 

  39. Zaitsev, Y.: Deformation and Strength Models for Concrete Based on Fracture Mechanics, Stroiizdat, Moscow 1982.

    Google Scholar 

  40. Mindess, S. and J. Young: Concrete, Prentice—Hall Inc., Englewood Cliffs N.J. 1981.

    Google Scholar 

  41. Harr, M.E.: Mechanics of Particulate Media, McGraw Hill Co., New York 1977.

    Google Scholar 

  42. Gopalaratnam, V.S. and S.P. Shah: Softening response of plain concrete in direct tension, J. Am. Concrete Inst., 82 (1985), 310–323.

    Google Scholar 

  43. Moavenzadeh, F. and T.W. Bremner: Fracture of Portland cement concrete, in Structure, Solid Mechanics and Engineering Design (Ed., M. Te’eni ), Wiley—Interscience Publ., New York„ 1971, 997–1008.

    Google Scholar 

  44. Nemat—Nasser, S. and H. Horii: Compression induced non—planar crack extension with application to splitting, exfoliation and rockburst, J. Geophys. Res., 87 (1982), 6805–6821.

    Google Scholar 

  45. Horii, H. and S. Nemat—Nasser: Compression induced micro—crack growth in brittle solids: axial splitting and shear failure, J. Geophys. Res., 90 (1985), 3105–3125.

    Article  ADS  Google Scholar 

  46. Davison, L., A.L. Stevens and M.E. Kipp: Theory of spell damage accumulation in ductile metals, J. Mech. Phys. Solids, 25 (1977), 11–28.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Wien

About this chapter

Cite this chapter

Krajcinovic, D., Sumarac, D. (1987). Micromechanics of the Damage Processes. In: Krajcinovic, D., Lemaitre, J. (eds) Continuum Damage Mechanics Theory and Application. International Centre for Mechanical Sciences, vol 295. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2806-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2806-0_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82011-7

  • Online ISBN: 978-3-7091-2806-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics