Fatigue Design

  • B. Atzori
  • G. Meneghetti
Part of the International Centre for Mechanical Sciences book series (CISM, volume 443)


Fatigue is a phenomenon of progressive damage of materials due to the repetition of applied loads. If these loads were statically applied, then they would not lead to failure. In machine design the critical range where fatigue failures may occur is between 104 and 106 load cycles concerning constant amplitude fatigue, while it is much higher concerning variable amplitude fatigue. So machines and structures may undergo unexpected fatigue failures even after a long in-service life, when their reliability is thought to be proved.


Fatigue Life Fatigue Strength Fatigue Limit Nominal Stress Structural Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASM Handbook (1996). Fatigue and Fracture. ASM International, vol. 19. ASTM E 647 — 88a, Standard test method for measurement of fatigue crack growth rates.Google Scholar
  2. Atzori B., Haibach E. (1979). Local strains at the toe of fillet welds and relationship with the fatigue life. Proceedings of the V II ALAS National Congress, Cagliari (in italian).Google Scholar
  3. Atzori, B. (1979). Metodi e Procedimenti di Calcolo nella Progettazione Meccanica. Laterza, Bari.Google Scholar
  4. Atzori, B. (1985). Meccanica della frattura o effetto di intaglio nella progettazione a fatica. Atti del X III Convegno Nazionale ALAS, Bergamo.Google Scholar
  5. Atzori B., Dattoma V., Demelio G. (1992). Relationship between the fatigue strength and the local strain at the toe of fillet welded joints. Proceedings of the X XI AIRS National Congress, Genova (in italian).Google Scholar
  6. Atzori B., Meneghetti G. (1998). The fatigue strength of fillet welded joints in structural steel. Proceedings of the X IV IGF National Congress, Trento (in italian).Google Scholar
  7. Atzori B., Lazzarin P., Tovo R. (1999). Stress field parameters to predict fatigue strength of notched components. J Strain Anal Eng. 34 (6): 1–17.Google Scholar
  8. Atzori B., Lazzarin P. (2000). Notch sensitivity and defect sensitivity under fatigue loading: two sides of the same medal. Int. J. Fracture, 107: L3 - L8.Google Scholar
  9. Atzori, B. (2000). Appunti di Costruzione di Macchine. Libreria Cortina, Padova.Google Scholar
  10. Atzori B., Lazzarin P. (2001). Meccanica della frattura e sensibilità all’intaglio. XV AIMETA Conference, Taormina (Italy).Google Scholar
  11. Atzori B., Meneghetti G. (2001). Fatigue strength of fillet welded structural steels: finite elements, strain gauges and reality. Int. J. Fatigue, 23 (8): 713–721.CrossRefGoogle Scholar
  12. Baumel A., Seeger T. (1991). Materials data for cyclic loading. Elsevier Amsterdam.Google Scholar
  13. Beretta S., Clerici P. (1997). Stima della resistenza a fatica in getti di A1Si7Mg. AIM National Conference, Padova.Google Scholar
  14. Bonollo F., Muffato G., Tovo R. (1997). Effetto della microstruttura sulle caratteristiche a fatica di getti in lega leggera d’alluminio. AIM National Conference, Padova.Google Scholar
  15. Bonollo F., Tovo R. (1999). Fatigue in Al casting alloys: metallurgical aspects. TALAT Lecture 1254, 3–16.Google Scholar
  16. Broek, K.D. The Practical use of fracture mechanics Kluwer Academic, Dordrecht, Germany BS7608 (1993): Fatigue design and assessment of steel structures. London: British Standards Institution.Google Scholar
  17. Couper M. J., Griffiths J. R. (1990). Effects of crack closure and mean stress on the threshold stress intensity factor for fatigue of an aluminium casting alloy. Fatigue Fract. Engng. Mater. Struct., 13: 615–624.CrossRefGoogle Scholar
  18. Couper M. J., Neeson A. E., Griffiths J. (1990). Casting defects and the fatigue behaviour of an aluminium casting alloy. Fatigue Fract Engng. Mater. Struct. 13: 213–227.CrossRefGoogle Scholar
  19. Dario Y. (1994). Statistical analysis of fatigue strength of specimens for aluminium alloy wheels. Degree Thesis, University of Padova.Google Scholar
  20. Dattoma V., Demelio G., Pappalettere C. (1991). Local strain for fatigue design of cruciform welded joints. Proceedings of the Spring Conference on Experimental Mechanics, Milwaukee.Google Scholar
  21. El. Haddad M. H., Topper M. H., Smith K. N. (1979). Prediction of Non-Propagating Cracks. Eng. Fract. Mech. 11: 573–584.Google Scholar
  22. Eurocode 3 (1992). Design of steel structures. Part 1–1: general rules and rules for buildings. ENV 1993–1–1. European Committee for Stardardisation.Google Scholar
  23. Frost, N.E., Marsh K.J., Pook, L.P. (1974). Metal Fatigue. Oxford University Press.Google Scholar
  24. Fuchs, H. O., Stephens R. I. (1980). Metal Fatigue in Engineering. John Wiley & Sons.Google Scholar
  25. Gall K., Yang N., Horstemeyer M., McDowell D. L., Fan J. (2000). The influence of Modified intermetallics and Si particles on fatigue crack paths in a cast A356 alloy. Fatigue Fract. Engng. Mater. Struct. 23: 159–172.CrossRefGoogle Scholar
  26. Guerini M. (1996). Previsione di resistenza a fatica di componenti automobilistici in lega leggera da fusione. Degree Thesis, University of Milano.Google Scholar
  27. Gurney T. R. (1991). The fatigue strength of transverse fillet welded joints - A study of the influence ofjoint geometry. Abington Publishing, Cambridge.CrossRefGoogle Scholar
  28. Gurney, T.R. (1984). Fatigue of welded structures. Cambridge University Press.Google Scholar
  29. Haibach E. (1968). Die Schwingfestigkeit von Schweissverdindungen aus der Sicht einer örtlichen Beanspruchungsmessung. Laboratorium für Betriebsfestigkeit, Darmstadt, Bericht N° FB-77.Google Scholar
  30. Honma U., Yokohama I., Kitaoka S. (1984). Fatigue Strength and Mechanical Properties of Aluminium alloy castings of different structural fineness. ALUMINIUM, 60, (12): 917–920.Google Scholar
  31. Koh S. K., Stephens R. I. (1989). Fracture toughness of A356–T6 cast aluminium alloy. SAE SP-760: 61–69.Google Scholar
  32. Lazzarin P., Tovo R. (1998). A notch intensity factor approach to the stress analysis of welds. Fatigue Fract Eng Mater Struct, 21 (9): 1089–1104.CrossRefGoogle Scholar
  33. Lazzarin P., Tovo R., Meneghetti G. (1997). Fatigue crack initiation and propagation phases near notches in metals with low notch sensitivity. Int. J. Fatigue, 19: 647–657.CrossRefGoogle Scholar
  34. Lazzarin, P., Tovo, R. (1998). A Notch Intensity Factor Approach to the Stress Analysis of Welds. Fatigue and Fracture of Engineering Materials and Structures, 21: 1089–1103.CrossRefGoogle Scholar
  35. Maddox S. J. (1987). The effect of plate thickness on the fatigue strength of fillet welded joints. The Welding Institute, Abington, Cambridge.Google Scholar
  36. Mahoney B. J., Stephens R. I. (1989). Fatigue Crack Growth ofA35 -T6 cast aluminium alloy. SAE SP-760: 49–59.Google Scholar
  37. Niemi, E. (1993). Stress Determination for Fatigue Analysis of Welded Components. Abington Publishing, Cambridge.Google Scholar
  38. Nisitani H., Endo M. (1988). Unified treatment of deep and shallow notches in rotating bending fatigue. ASTM 924 Basic Questions in Fatigue, 1: 136–153.CrossRefGoogle Scholar
  39. Odeg.rd J.A., Pedersen K. (1994). Fatigue properties of an A356 aluminium alloy for automotive applications. Metal Matrix Composites, SP-1010: 25–32.Google Scholar
  40. Radaj, D. (1996). Review of Fatigue Strength Assessment of non Welded and Welded Strucutres based on local parameters. International Journal of Fatigue, 18: 153–170.CrossRefGoogle Scholar
  41. Radaj, D., Sonsino, C. (1998). Fatigue assessment of welded joints by local approaches. Abington Publishing, Cambridge.Google Scholar
  42. Rosso M., Scavino G., Albertinazzi M., Zanda A. (1997). Caratterizzazione Microstrutturale meccanica e a fatica della lega d’alluminio ipoeutettica A356 in un getto a scalini AIM National Conference, Padova.Google Scholar
  43. Seniw M. E., Conley J. G., Fine M. E. (2000). The effects of microscopic inclusion locations and silicon segregation on fatigue lifetimes of aluminium alloy A356 castings. Mat. Sc.. 2, 2: 43–48.Google Scholar
  44. Shiozawa K., Tohda Y., Sun S. M. (1997). Crack initiation and small fatigue crack growth behaviour of squeeze-cast Al-Si aluminium alloy. Fatigue Fract. Engng. Mater. Struct. 20: 237–247.CrossRefGoogle Scholar
  45. Skallerud B., Iveland T., H irkegârd G. (1993). Fatigue life assessment of aluminium alloys with casting defects. Eng. Fracture Mech. 44: 857–874.CrossRefGoogle Scholar
  46. Stanzl-Tscegg S. E., Mayer H. R., Beste A., Kroll S. (1995). Fatigue and fatigue crack propagation in A1Si7Mg Cast alloys under in-service loading conditions. Int. J. Fatigue, 17: 149–155.CrossRefGoogle Scholar
  47. Stephens R. I., Wigant C.C. (1989). Low cycle fatigue of A356–T6 cast aluminium alloy- A Round-Robin test program. SAE 760: 2–28.Google Scholar
  48. Suresh, S. (1991). Fatigue of Materials. Cambridge University Press.Google Scholar
  49. Suzuki H., Weimin G, Dewa H., Tomota Y., Ito Y. (1990). An influence of cooling rate on the fatigue strength of aluminium alloy castings for the wheel of automobile. Proceedings of Fatigue 90, 1, 273–278.Google Scholar
  50. Torti C. (1996). Previsione di resistenza a fatica di componenti in lega leggera di fusione. Degree Thesis, Politecnico di Milano.Google Scholar
  51. Verreman Y, Nie B. (1996). Early development of fatigue cracking at manual fillet welds. Fatigue Fract Eng Mater Struct, 19 (6): 669–681.CrossRefGoogle Scholar
  52. Wickberg A., Gustafsson G., Larsson L. E. (1984). Microstructural Effects on the Fatigue Properties of a Cast A1Si7Mg alloy. SAE Technical Paper N. 840121, 93: 1728–1735.Google Scholar
  53. Wigant C. C., Stephens R. I. (1987). Fatigue crack growth behaviour of A356–T6 aluminium alloys. Proc. Int. Conf. Fatigue 87, 165–173.Google Scholar
  54. Wigant C. C., Stephens R. I. (1989). Fatigue Crack growth of A356–T6 cast aluminium alloy. SAE 760: 49–59.Google Scholar
  55. Wiliams G., Fisher K. M. (1983). Squeeze forming of aluminium-alloy components. In Production to Near Net Shape: Source Book, ASM, Metals park OH.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • B. Atzori
    • 1
  • G. Meneghetti
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of PaduaItaly

Personalised recommendations