Large-Eddy Simulation of Jets: State of the Art and Open Problems

  • Maria Vittoria Salvetti
Part of the International Centre for Mechanical Sciences book series (CISM, volume 439)


The mathematical formulation of large-eddy simulation is introduced and the closure problem (subgrid scale modeling) is briefly reviewed. Some fields which need further investigation, in order that large-eddy simulation becomes a completely reliable tool, in particular for the analysis of complex flows, are identified and discussed. Specific problems for application to jet flows are also illustrated. Finally, examples of large-eddy simulations of jets in cross flow are presented.


High Reynolds Number Subgrid Scale Smagorinsky Model Turbulent Shear Flow Numerical Discretization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhavan, R., Ansari, A., Kang, S., and Mangiavacchi, N. (2000). Subgrid-scale interactions in a numerically simulated planar turbulent jet and implications for modelling. J. Fluid Mech. 408: 83–120.CrossRefzbMATHGoogle Scholar
  2. Akselvoll, K., and Moin, R (1996). Large-eddy simulation of turbulent confined coannular jets. J. Fluid Mech. 315: 387–411.CrossRefGoogle Scholar
  3. Andreopoulos, J. (1982). Measurements in a jet-pipe flow issuing perpendicularly into a cross stream. J. Fluid Engigneering 104: 493–499.CrossRefGoogle Scholar
  4. Andreopoulos, J., and Rodi, W. (1982). Experimental investigation of jets in a crossflow. J. Fluid Mech. 138: 93–127.CrossRefGoogle Scholar
  5. Bardina, J., Ferziger, J.H., and Reynolds, W.C. (1980). Improved subgrid scale models for large eddy simulation. AMA paper 80–1357.Google Scholar
  6. Boersma, B.J., Brethouwer, G., and Nieuwstadt, F.T.M. (1998). A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Phys. Fluids 10 (4): 899–909.CrossRefGoogle Scholar
  7. Cabot, W., and Main, R (2000). Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow, Turbulence and Combustion 63 (1–4): 269–291.CrossRefzbMATHGoogle Scholar
  8. Chen, K.S., and Hwang, J.Y. (1991). Experimental study on the mixing of one-and dual-line heated jets with a cold cross-flow in a confined channel AIAA J. 29 (3): 353–360.CrossRefGoogle Scholar
  9. Cziesla, T., Tandogan, E., and Mitra, N.K. (1997). Large-eddy simulation of heat transfer from impinging slot jets. Num. Heat Transfer Part A: Applications 32 (1): 1–17.CrossRefGoogle Scholar
  10. Dai, Y., Kobayashi, T., and Taniguchi, N. (1995). Investigation of organized structures in plane turbulent jet flow by using large eddy simulation. In Proc. of 10th Symposium on Turbulent Shear Flows.Google Scholar
  11. Degano, G.M., Campolo, M., Soldati, A., and Cortelezzi, L. (2001). Influence of inlet boundary conditions on the numerical calculation of a jet in crossflow. Manuscript submitted for publication.Google Scholar
  12. Desjardin, P.E., and Frankel, S.H. (1998). Large eddy simulation of a nonpremixed reacting jet: application and assessment of subgrid-scale combustion models. Phys. Fluids 10 (9): 2298–2314.CrossRefGoogle Scholar
  13. Domaradzki, J.A., and Saiki, E.M. (1997). A subgrid-scale model based on the estimation of unresolved scales of turbulence. Phys. Fluids 9 (7): 2148–2164.CrossRefGoogle Scholar
  14. Ducros, F., Nicoud, F., and Schönfeld, T. (1997). Large eddy simulation of compressible flows on hybrid meshes. In Proc. of 11th Symposium on Turbulent Shear Flows: 28. 1–28. 6.Google Scholar
  15. Erlebacher, G., Hussaini, M.Y., Speziale, C.G., and Zang, T.A. (1992). Toward the large-eddy simulation of compressible flows. J. Fluid Mech. 238: 155–185.CrossRefzbMATHGoogle Scholar
  16. Fureby, C., and Grinstein, F.F. (1999). Monotonically integrated large eddy simulation of free shear flows. AIAA J. 37 (5): 544–556.CrossRefGoogle Scholar
  17. Gamet, L., and Estivalezes, J.L. (1998). Application of Large-Eddy Simulations and Kirchoff Method to Jet Noise Prediction. AIAA J. 36 (12): 2170–2178.CrossRefGoogle Scholar
  18. Gao, S., and Voke, P.R. (1995). Large-eddy simulation of turbulent heat transport in enclosed impinging jets. Int. J. Heat and Fluid Flow 16 (5): 349–356.CrossRefGoogle Scholar
  19. Gamier, E., Sagaut, P., Comte, P., and Deville, M. (1999). On the use of shock-capturing schemes for large-eddy simulation. J. Comp. Phys. 16 (5): 349–356.Google Scholar
  20. Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. (1991). A dynamic subgrid-scale eddy-viscosity model. Phys. Fluids A 153: 273–311.Google Scholar
  21. Geurts, B. (1997). Inverse modeling for large-eddy simulation. Phys. Fluids 9 (12): 3585–3587.CrossRefMathSciNetGoogle Scholar
  22. Ghosal, S., Lund, T.S., Moin, P., and Akselvoll K. (1995). A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286: 229–255.CrossRefzbMATHMathSciNetGoogle Scholar
  23. Ghosal, S. (1996). An analysis of numerical errors in large-eddy simulations of turbulence. J. Comp. Phys. 125 (1): 187–206.CrossRefzbMATHMathSciNetGoogle Scholar
  24. Giles, M.B. (1990). Nonreflecting boundary conditions for Euler equation calculations. AIAA J. 28 (12): 2050–2058.CrossRefGoogle Scholar
  25. Grinstein, F.F. (1994). Open boundary conditions in the simulation of subsonic turbulent shear flows. J. Comp. Phys. 115 (1): 43–55.CrossRefzbMATHMathSciNetGoogle Scholar
  26. Grinstein, F.F., Gutmark, E., and Parr, T. (1995). Near field dynamics of subsonic free square jets. A computational and experimental study. Phys. Fluids 7 (6): 1483–1497.CrossRefGoogle Scholar
  27. Grinstein, F.F., and De Vore, C.R. (1996). Dynamics of coherent structures and transition to turbulence in free square jets. Phys. Fluids 8 (5): 1237–1251.CrossRefzbMATHMathSciNetGoogle Scholar
  28. Grinstein, F.F., Gutmark, E.J., Parr, T.P., Hanson-Parr, D.M., and Obeysekare, U. (1996). Streamwise and spanwise vortex interaction in an axisymmetric jet. A computational and experimental study. Phys. Fluids 8 (6): 1515–1524.CrossRefGoogle Scholar
  29. Grinstein, F.F. (2001). Vortex dynamics and entrainment in rectangular free jets. J. Fluid Mech. 437: 69–101.CrossRefzbMATHGoogle Scholar
  30. Grötzbach, G. (1993). Direct numerical and large-eddy simulations of turbulent channel flows. In Encyclopedia of Fluid Mechanics Cheremisinoff N. ed., Gulf Publishing, West Orange, NJ.Google Scholar
  31. Hong, Y., and Mingde, S. (1999). Application and comparison of two SGS models in large eddy simulation of free turbulent jet flow. Com. Nonlinear Science & Num. Simulation 4 (1): 12–19.CrossRefzbMATHGoogle Scholar
  32. Horiuti, K. (1997). A new dynamic two-parameter mixed model for large-eddy simulation. Phys. Fluids 9 (11): 3443–3464.CrossRefzbMATHMathSciNetGoogle Scholar
  33. Hu, F.Q. (1996). On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. J. Comput. Phys. 129 (1): 201–219.CrossRefzbMATHMathSciNetGoogle Scholar
  34. Hughes, T.J.R., Mazzei, L., and Jansen, K.E. (2000). Large eddy simulation and the variational multiscale method. Computing and Visualization in Science 3 (1–2): 47–59.CrossRefzbMATHGoogle Scholar
  35. Hughes, T.J.R., Mazzei, L., Oberai, A.A., and Wray, A.A. (2001). The multiscale formulation of large eddy simulation: d ecay of homogeneous isotropic turbulence. Phys. Fluids 13 (2): 505–512.CrossRefGoogle Scholar
  36. Jones, W.P., and Wille, M. (1996). Large eddy simulation of a plane jet in a cross-flow. Int. J. Heat and Fluid Flow 17 (3): 296–306.CrossRefGoogle Scholar
  37. Kraichnan, R.H. (1976). Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33 (8): 1521–1536.CrossRefGoogle Scholar
  38. Kravchenko, A.G., and Moin, P. (2000). Numerical studies of flow over a circular cylinder at ReD=3900. Phys. Fluids 12 (2): 403–417.CrossRefzbMATHGoogle Scholar
  39. Leonard, A. (1974). Energy cascade in large eddy simulations of turbulent fluid flows. Adv. Geophys. 18: 237.Google Scholar
  40. Le Ribault, C., Sarkar, S., and Stanley, S.A. (1999). Large eddy simulation of a plane jet. Phys. Fluids 11 (10): 3069–3083.CrossRefzbMATHGoogle Scholar
  41. Lesieur, M., and Comte, R. (1997). Large-eddy simulations of compressible turbulent flows. In AGARD-R819: A4. 1 - A4. 39.Google Scholar
  42. Liu, S., Meneveau, C., and Katz, J. (1994). On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech. 275: 83–119.CrossRefGoogle Scholar
  43. McIlwain, S., and Pollard, A. (2002). Large eddy simulation of the effects of mild swirl on the near field of a round jet. Phys. Fluids 14 (2): 653–661.CrossRefGoogle Scholar
  44. Meneveau, C., Lund, T.S., and Cabot, W.H. (1996). A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319: 353–385.CrossRefzbMATHGoogle Scholar
  45. Mittal, R., and Moin, P. (1997). Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows. AIAA J. 35 (8): 1415–1417.CrossRefzbMATHGoogle Scholar
  46. Nadaoka, K., Nihei, Y., and Yagi, H. (1999). Grid-averaged Lagrangian LES model for multiphase turbulent flow. Int. J. Multiphase Flow 25 (8), 1619–1643.CrossRefzbMATHGoogle Scholar
  47. Olsson, M., and Fuchs, L. (1996). Large eddy simulation of the proximal region of a spatially developing circular jet. Phys. Fluids 8 (8): 2125–2137.CrossRefGoogle Scholar
  48. Olsson, M., and Fuchs, L. (1998). Large eddy simulations of a forced semiconfined circular impinging jet. Phys. Fluids 10 (2): 476–486.CrossRefGoogle Scholar
  49. Poinsot, T.J., and Lele, S.K. (1992). Boundary conditions for direct simulations of compressible viscous flows. J. Comp. Phys. 101 (1): 104–129.CrossRefzbMATHMathSciNetGoogle Scholar
  50. Porté-Agel, F., Meneveau, C., and Parlange, M.B. (2000). A scale-dependent dynamic model for largeeddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech. 415: 261–284.CrossRefzbMATHMathSciNetGoogle Scholar
  51. Pruett, C.D. (2000). Eulerian Time-Domain Filtering for Spatial Large-Eddy Simulation. AIM J. 38 (9): 1634–1642.Google Scholar
  52. Rizk, M.H., and Menon, S. (1988). Large-eddy simulations of axisymmetric excitation effects on a row of impinging jets. Phys. Fluids 31 (7): 1892–1903.CrossRefGoogle Scholar
  53. Salvetti, M.V., and Banerjee, S. (1995). A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations. Phys. Fluids 7 (11): 2831–2847.CrossRefzbMATHGoogle Scholar
  54. Salvetti, M.V., Orlandi, P., and Verzicco, R. (1996). Numerical simulations of transitional axisymmetric coaxial jets. AIM J. 34 (4): 736–743.Google Scholar
  55. Salvetti, M.V., and Beux, F. (1998). The effect of the numerical scheme on the subgrid scale term in large-eddy simulation. Phys. Fluids 10 (11): 3020–3022.CrossRefGoogle Scholar
  56. Sarghini, F., Piomelli, U., and Balaras, E. (1999). Scale-similar models for large-eddy simulations. Phys. Fluids 11 (6): 1956–1607.CrossRefMathSciNetGoogle Scholar
  57. Schlüter, J.U., and Schönfeld, T. (2000). LES of jets in cross flow and its application to a gas turbine burner. Flow, Turbulence and Combustion 65: 177–203.CrossRefzbMATHGoogle Scholar
  58. Schmidt, H. and Schumann, U. (1989). Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 200: 511–562.CrossRefzbMATHGoogle Scholar
  59. Schönfeld, T., and Rudgyard, M.A. (1999). Steady and unsteady flows simulations using the hybrid flow solver AVBP. AMA J. 37 (11): 1378–1385.Google Scholar
  60. Sherif, S.A. and Pletcher, R. (1989). Measurements of the flow and turbulence characteristics of round jets in crossflow. Trans. ASME. J. Fluids Engineering 111: 165–171.CrossRefGoogle Scholar
  61. Smagorinsky, J. (1963). General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91: 99–164.CrossRefGoogle Scholar
  62. Smith, S.H., and Mungal, M.G. (1998). Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357: 83–122.CrossRefGoogle Scholar
  63. Steiner, H., and Bushe, W.K. (2001). Large-eddy simulation of a turbulent reacting jet with conditional source-term estimation. Phys. Fluids 13 (3): 754–769.CrossRefGoogle Scholar
  64. Stolz, S., and Adams, N.A. (1999). An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11 (7): 1699–1701.CrossRefzbMATHGoogle Scholar
  65. Thompson, K.W. (1987). Time dependent boundary conditions for hyperbolic systems. J. Comp. Phys. 68 (1): 1–24.CrossRefzbMATHGoogle Scholar
  66. Toy, N., Savory, E., and McCusker, S. (1993). The interaction region associated with twin jets and a normal crossflow. In AGARD-CP-534.Google Scholar
  67. Urbin, G., and Metais, O. (1997). Large-eddy simulations of three-dimensional spatially-developing jets In Voke, P.R., Kleiser, L., and Chollet, J.P. Eds. Direct and Large-Eddy Simulation II. Dordrecht: Kluwer Academic Publishers.Google Scholar
  68. Vasilyev, O.V., Lund T.S., and Moin, P. (1998). A general class of commutative filters for LES in complex geometries J. Comp. Physics 146 (1): 82–104.CrossRefzbMATHMathSciNetGoogle Scholar
  69. Voke, P.R., and Gao, S. (1998). Numerical study of heat transfer from an impinging jet. Int. J. Heat and Mass Transfer 41 (4–5): 671–680.CrossRefzbMATHGoogle Scholar
  70. Vreman, B., Geurts, B., and Kuerten, H. (1995). Subgrid-modelling in LES of compressible flow. Appl. Sc. Res. 54 (3): 191–203.CrossRefzbMATHGoogle Scholar
  71. Wall, C., Boersma, B.J., and Moin, P. (2000). An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of non premixed, turbulent combustion with heat release. Phys. Fluids 12 (10): 2522–2529.CrossRefGoogle Scholar
  72. Weinberger, C., Rewerts, J., and Janicka, J. (1997). The influence of inlet conditions on a large eddy simulation of a turbulent plane jet. In Proc. of 11th Symposium on Turbulent Shear Flows: 25. 17–25. 22.Google Scholar
  73. Winckelmans, G.S., Wray, A.A., and Vasilyev, O.V. (1998). Testing of a new mixed model for LES: the Leonard model supplemented by a dynamic Smagorinsky term. In Proc. Summer Program-1998, (ed. Winckelmans, G.S., Wray, A.A., and Vasilyev, O.V ), 367–388. Stanford University and NASA Ames Research Center (Center for Turbulence Research).Google Scholar
  74. Yakhot, A., Orszag, S.A., Yakhot, V., and Israeli, M. (1989). Renormalization group formulation of large-eddy simulation. J. Scient. Comp. 4 (2): 139–158.CrossRefMathSciNetGoogle Scholar
  75. Yuan, L.L., and Street, R.L. (1998). Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10 (9): 2323–2335.CrossRefGoogle Scholar
  76. Yuan, L.L., Street, R.L., and Ferziger, J.H. (1999). Large-eddy simulations of a round jet in crossflow. J. Fluid Mech. 379: 71–104.CrossRefzbMATHGoogle Scholar
  77. Zang, Y., Street, R.L., and Koseff, J. (1993). A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5: 3186.CrossRefGoogle Scholar
  78. Zhou, X., Luo, K.H., and Williams, J.J.R. (2001). Large-eddy simulation of a turbulent forced plume. Eur. J. Mech. B-Fluids 20: 233–254.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Maria Vittoria Salvetti
    • 1
  1. 1.Department of Aerospace EngineeringUniversity of PisaItaly

Personalised recommendations