Three-dimensional Vortex Modeling of Unforced Transverse Jets

  • Luca Cortelezzi
  • Ann R. Karagozian
Part of the International Centre for Mechanical Sciences book series (CISM, volume 439)


The present computational study focuses on the mechanisms for the dynamical generation and evolution of vorticity associated with the jet in crossflow, with special focus on nearfield flow evolution and the generation of the counter-rotating vortex pair (CVP) observed to dominate the jet cross-section. Transient numerical simulations of the flowfield are performed using three-dimensional vortex elements. Vortex ring rollup, interactions, tilting, and folding are observed in the nearfield, consistent with the ideas described in the experimental work of Kelso et al. (1996), for example. The time-averaged effect of these jet shear layer vortices, even over a single period of their evolution, is seen to result in initiation of the CVP. Insight into the topology of the flowfield, the formation of wake vortices and the entrainment of crossflow is also provided in this study. Further details on the complete study may be found in Cortelezzi & Karagozian (2001).


Vortex Ring Vortical Structure Vorticity Field Vortex Sheet Vortex Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbitt, J. D. Iii, Segal, C., Mcdaniel, J. C., Krauss, R. H., and Whitehurst, R. B. 1993, Experimental supersonic hydrogen combustion employing staged injection behind a rearward-facing step. J. Prop. Power 9, 472–478.CrossRefGoogle Scholar
  2. Ashurst, W. T. 1983 Large eddy simulation via vortex dynamics Aiaa Paper No. 83–1879-CP.Google Scholar
  3. Ashurst, W. T. and Meiburg, E. 1988 Three-dimensional shear layers via vortex dynamics, J. Fluid Mech. 189, 87–116.CrossRefGoogle Scholar
  4. Broadwell, J. E. and Breidenthal, R. E. 1984 Structure and mixing of a transverse jet in incompressible flow, J. Fluid Mech. 148, 405–412.CrossRefGoogle Scholar
  5. Brzustowski, T. A. 1977 Hydrocarbon turbulent diffusion flame in subsonic cross flow. Turbulent Combustion: Prog. Astro. Aero. 58, 407–430.Google Scholar
  6. Campolo, M., Degano, G.M., Cortelezzi, L. and Soldati, A. 2002 Numerical appraisal of jet-to-crossflow coupling in a transverse jet. Manipulation and Control of Transverse Jets, Springer-Verlag.Google Scholar
  7. Coelho, S. L. V. and Hunt, J. C. R. 1989 The dynamics of the near field of strong jets in crossflows, J. Fluid Mech. 200, 95–120.CrossRefzbMATHMathSciNetGoogle Scholar
  8. Cortelezzi, L. and Karagozian, A. R. 2001 On the formation of the counter-rotating vortex pair in transverse jets, J. Fluid Mech. 446, 347–373.zbMATHMathSciNetGoogle Scholar
  9. Cottet, G-H. and Koumoutsakos, P. D. 2000 Vortex methods — Theory and Practice, Cambridge University Press.Google Scholar
  10. Dahm, W. J. A., Frieler, C., and Tryggvason, G. 1992 Vortex structure and dynamics in the near field of a coaxial jet, J. Fluid Mech. 241, 371–402.CrossRefGoogle Scholar
  11. Fric, T. F. and Roshko, A. 1994 Vortical structure in the wake of a transverse jet, J. Fluid Mech. 279, 1–47.CrossRefGoogle Scholar
  12. Gharakhani, A. and Ghoniem, A.F. 1997 Three-dimensional vortex simulation of time dependent incompressible internal viscous flows, J. Comp. Phys. 134, 75–95.CrossRefzbMATHMathSciNetGoogle Scholar
  13. Hottel, V. O. and Luce, R. G. 1953 Burning in laminar and turbulent fuel jets, Fourth Symposium (Intl.) on Combustion, 97.Google Scholar
  14. Kamotani, Y., and Greber, I. 1972 Experiments on a turbulent jet in a cross flow. Aim J. 10, 1425–1429.Google Scholar
  15. Karagozian, A. R. 1986b The flame structure and vorticity generated by a chemically reacting transverse jet. Aiaa J. 24, 1502–1507.CrossRefGoogle Scholar
  16. Karagozian, A. R. 2002 Background on and applications of jets in crossflow. Manipulation and Control of Transverse Jets, Springer-Verlag.Google Scholar
  17. Karagozian, A. R., Wang, K. C., LE, A.-T., and Smith, O. I. 1996 Transverse gas jet injection behind a rearward-facing step, J. Prop. Power 12, 1129–1136.CrossRefGoogle Scholar
  18. Kelso, R. M., Lim, T. T., and Perry, A. E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111–144.CrossRefGoogle Scholar
  19. Leonard, A. 1985 Computing three-dimensional incompressible flows with vortex elements. Ann. Rev. Fluid Mech. 17, 523–559.CrossRefGoogle Scholar
  20. Lim, T. T., Kelso, R. M., and Perry, A. E. 1998 A visual study of vortex rings fired transversely into a crossflow. 13th Australian Fluid Mechanics Conference, Monash University, Melbourne, Australia.Google Scholar
  21. Martin, J. E. and Meiburg, E. 1991 Numerical investigation of three-dimensionally evolving jets subject to axisymmetric and azimuthal perturbations. J. Fluid Mech. 230, 271–318.CrossRefzbMATHGoogle Scholar
  22. Martin, J. E. and Meiburg, E. 1992 Numerical investigation of three-dimensionally evolving jets under helical perturbations. J. Fluid Mech. 243, 457–487.CrossRefGoogle Scholar
  23. Nitsche, M., And Krasny, R. 1994 A numerical study of a vortex ring formation at the edge of a circular tube. J. Fluid Mech. 276, 139–161.CrossRefzbMATHMathSciNetGoogle Scholar
  24. Parekh, D. E., Leonard, A. and Reynolds, W. C. 1988 Bifurcating jets at high Reynolds numbers. Report TF-35, Thermosciences Division, Department of Mechanical Engineering, Stanford University.Google Scholar
  25. Rudman, M. 1994 Numerical simulation of a jet in crossflow. International Colloquium on Jets, Wakes, and Shear Layers, Melbourne, AU. Csiro.Google Scholar
  26. Sarpskaya T. 1994 Adv. Appl. Mechanics 31, 113–247.CrossRefGoogle Scholar
  27. Schuller, T., King, J., Majamaki, A., and Karagozian, A. R. 1999 An Experimental Study of Acoustically Controlled Gas Jets in Crossflow, Bull. Amer. Phys. Soc. 44 (8), 111.Google Scholar
  28. Smith, S. H. and Mungal, M. G. 1998 Mixing, structure and scaling of the jet in crossflow, J. Fluid Mech. 357, 83–122.CrossRefGoogle Scholar
  29. Steward, F. R. 1970 Prediction of the height of turbulent diffusion buoyant flames, Combust. Sci. Tech. 2, 202–212.CrossRefGoogle Scholar
  30. Uenishi, K., Rogers, R. C., and Northam, G. B. 1989 Numerical predictions of a rearward-facingstep flow in a supersonic combustor, J. Propul. Power 5, 158–164.CrossRefGoogle Scholar
  31. Yuan, L.L. and Street, R. L. 1998 Trajectory and entrainment of a round jet in crossflow, Physics of Fluids 10, 2323–2335.CrossRefGoogle Scholar
  32. Yuan, L. L., Street, R. L., and Ferziger, J. H. 1999 Large-eddy simulations of a round jet in crossflow, J. Fluid Mech. 379, 71–104.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Luca Cortelezzi
    • 1
  • Ann R. Karagozian
    • 2
  1. 1.Department of Mechanical EngineeringMcGill UniversityMontrealCanada
  2. 2.Department of Mechanical Aerospace EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations