Advertisement

Numerical appraisal of jet-to-crossflow coupling in a transverse jet

  • Marina Campolo
  • Gian Maria Degano
  • Alfredo Soldati
  • Luca Cortelezzi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 439)

Abstract

The nearfield evolution of a jet in crossflow is strictly related to the coupling between the flow in the pipe and the transverse flow. In this work, we address the problem of identifying the extent of this coupling for an incompressible fluid and we examine the influence of the inlet boundary conditions on the simulation of the transverse jet. First, we validate the numerical computations using experimental data by Shandorov (Abramovich, 1963). We examine in detail the flow field calculated numerically for a jet-to-crossflow velocity ratio equal to 2.2. We evaluate in particular the evolution of the streamwise velocity profile and vorticity in the crossflow direction to characterize the structure of the jet. Second, we evaluate the effect of increasing the jet-to-crossflow velocity ratios on jet penetration. Third, we compare the numerical results obtained considering the pipe and imposing a uniform velocity profile at the jet exit. Results show that the jet-to-crossflow velocity ratio and the inlet boundary condition for the jet influence jet penetration into the crossflow and jet velocity distribution.

Keywords

Velocity Profile Axial Velocity Velocity Ratio Inlet Boundary Condition Pipe Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovich, G. (1963). The theory of turbulent jets,Physical Sciences Engineering.Google Scholar
  2. Ajersch, P., Zhou, J. M., Ketler, S., Salcudean, M., and Gartshore, I. S. (1997). Multiple jets in a crossflow: detail measurements and numerical simulations ASME, J. Turbomachinery, 119, 330–342.CrossRefGoogle Scholar
  3. Andreopoulos, J., and Rodi, W. (1984). Experimental investigation of jets in a crossflow J. Fluid Mech., 138, 93–127.CrossRefGoogle Scholar
  4. Andreopoulos, J. (1985). On the structure of jets in a crossflow J. Fluid Mech., 157, 163–197.CrossRefGoogle Scholar
  5. Antonia, R. A., and Zhao, Q. (2001). Effect of initial conditions on a circular jet Exp. Fluids, 31, 319–323.CrossRefGoogle Scholar
  6. Broadwell, J. E., and Breidenthal, R. E., (1984). Structure and mixing of a transverse jet in incompressible flow J. Fluid Mech., 148, 405–412.CrossRefGoogle Scholar
  7. Chang, Y. K., and Vakili, A. D. (1995). Dynamics of vortex rings in crossflow Phys. Fluids, 7, 1583–1597.CrossRefGoogle Scholar
  8. Coelho, S. L. V., and Hunt, J. C. R. (1989). The dynamics of the near field of strong jets in crossflows J. Fluid Mech., 200, 95–120.CrossRefMATHMathSciNetGoogle Scholar
  9. Cortelezzi, L., and Karagozian, A. R. (2001). On the formation of counter rotating vortex pair in transverse jets J. Fluid Mech., 446, 347–373.MATHMathSciNetGoogle Scholar
  10. Davis, S. A., and Glezer, A. (1999). Mixing control of fuel jets using synthetic jet technology: velocity field measurements AIAA Paper 99–0447, 37 th Aerospace Sciences Meeting, Reno, NV, 1–15.Google Scholar
  11. Degano, G. M., Campolo, M., Soldati, A., and Cortelezzi, L. (2002). Influence of inlet boundary conditions on the numerical calculation of a jet in crossflow Int. J. Heat and Fluid Flow, (submitted).Google Scholar
  12. Findlay, M. J., Salcudean, M., and Gartshore, I. S., (1999). Jets in crossflow: effects of geometry and blowing ratio J. Fluids Eng., 121, 373–378.CrossRefGoogle Scholar
  13. Fric, T. F., and Roshko, A., (1994). Vortical structure in the wake of a transverse jet J. Fluid Mech., 279, 1–47.CrossRefGoogle Scholar
  14. Hsu, A. T., and Guo, Y. (2000). Unsteady simulation of a jet-in-crossflow Int. J. Comp. Fluid Dyn., 14, 41–53.CrossRefMATHMathSciNetGoogle Scholar
  15. Karagozian, A. R. (1986). An analytical model for the vorticity associated with a transverse jet AIAA, 24, 429–436.CrossRefGoogle Scholar
  16. Kelso, R. M., Lim, T. T., and Perry, A. E. (1996). An experimental study of round jets in a cross-flow J. Fluid Mech., 306, 111–144.CrossRefGoogle Scholar
  17. Kelso, R. M., Lim, T. T., and Perry, A. E. (1998). New experimental observations of vortical motions in transverse jets Phys. Fluids, 10, 2427–2429.CrossRefGoogle Scholar
  18. Khan, Z. U., and Johnston, J. R. (2000). On vortex generating jets Int. J. Heat & Fluid Flow, 21, 506–511.CrossRefGoogle Scholar
  19. Knowles, K., and Bray, D. (1991). Computation of normal impinging jets in crossflow and comparison with experiments Int. J. Num. Meth. Fluids, 13, 1225–1233.CrossRefGoogle Scholar
  20. Leboeuf, F., Huang, G. R, Kulisa, P., and Perrin, G., (1991). Model and computation of discrete jets in crossflow“, Eur. J. Mech., B Fluids, 10, 629–650.MATHGoogle Scholar
  21. M’Closkey, R. T., King, J. M., Cortelezzi, L., and Karagozian, A. R. (2002). The actively controlled jet in crossflow J. Fluid Mech., 452, 325–335.MATHGoogle Scholar
  22. Moussa, Z. M., Trischka, J. W., and Eskinazi, S. (1977). The near field in the mixing of a round jet with a cross-stream J. Fluid Mech., 80, 49–80.CrossRefGoogle Scholar
  23. Needham, D. J., Riley, N., and Smith, J. H. B. (1988). A jet in crossflow J. Fluid Mech., 188, 159–184.CrossRefMATHMathSciNetGoogle Scholar
  24. Papaspyros, J. N. E., Kastrinakis, E. G., and Nychas, S. G. (1997). Coherent contribution to turbulent mixing of a jet in crossflow Appl. Sci. Res., 57, 291–307.CrossRefGoogle Scholar
  25. Rivero, A., Ferrè, J. A., and Giralt, F. (2001). Organized motions in a jet in crossflow J. Fluid Mech., 444, 117–149.CrossRefMATHGoogle Scholar
  26. Rudman, M. (1996). Simulation of the near field of a jet in a cross flow Exp. Thermal & Fluid Sci., 12, 134–141.CrossRefGoogle Scholar
  27. Sani, R. L., and Gresho, P. M. (1994). Resume and remarks on the open boundary condition minisymposium Int. J. Num. Meth. Fluids, 18, 983–1008.CrossRefMATHMathSciNetGoogle Scholar
  28. Schlichting, H. (1979). Boundary layer theory, Mc Graw Hill.Google Scholar
  29. Sivadas, V., Pani, B. S., Butefisch, K. A., and Meier, G. E. A. (1997). Flow visualisation studies on growth of area of deflected jets Exps. Fluids, 23, 105–112.CrossRefGoogle Scholar
  30. Smith, S. H., and Mungal, M. G. (1998). Mixing, structure and scaling of the jet in crossflow J. Fluid Mech., 357, 83–122.CrossRefGoogle Scholar
  31. Soldati, A., and Banerjee, S. (1998). Turbulence modification by large scale organized electrohydrodynamic flows Phys. Fluids, 10, 1742–1756.CrossRefGoogle Scholar
  32. Sykes, R. I., Lewellen, W. S., and Parker, S. F. (1986). On the vorticity dynamics of a turbulent jet in a crossflow J. Fluid Mech., 168, 393–413.CrossRefMATHGoogle Scholar
  33. Xia, L. P., and Lam, K. M. (1997). A vertical round jet issuing into an unsteady crossflow consisting of a mean current and a sinusoidal fluctuating component J. Wind Eng. Ind. Aerodyn., 6768, 843–857.CrossRefGoogle Scholar
  34. Yuan, L. L., Street, R. L., and Ferziger, J. H. (1999). Large-eddy simulations of a round jet in crossflow J. Fluid Mech., 379, 71–104.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Marina Campolo
    • 1
  • Gian Maria Degano
    • 1
  • Alfredo Soldati
    • 1
  • Luca Cortelezzi
    • 2
  1. 1.Centro di Fluidodinamica e Idraulica and Dipartimento di Scienze e Tecnologie ChimicheUniversity of UdineUdineItaly
  2. 2.Department of Mechanical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations