Modeling turbulent particle dispersion in transverse jets

  • Marina Campolo
  • Massimiliano Fornasier
  • Alfredo Soldati
Part of the International Centre for Mechanical Sciences book series (CISM, volume 439)


Turbulent particle dispersion in transverse jets depends closely on the evolution dynamics of the large scale fluid structures developing from the interaction between the jet and the crossflow. In this work, we model turbulent particle dispersion in transverse jets using Lagrangian approach for particles and Large Eddy Simulation for the flow field. We show the effects of the large scales structures on particle segregation and dispersion, demonstrating the relationship between vorticity field and particle concentration. We also show the inadequacy of engineering-like approach such as steady state RANS, to model dispersion in this type of flow.


Flow Field Strouhal Number Vortical Structure Particle Dispersion Streamwise Vorticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramovich, G., (1963). The theory of turbulent jets,Physical Sciences Engineering.Google Scholar
  2. Andreopoulos, J., and Rodi, W., (1984). Experimental investigation of jets in a crossflow J. Fluid Mech., 138, 93–127.CrossRefGoogle Scholar
  3. Andreopoulos, J.,(1985). On the structure of jets in a crossflow J. Fluid Mech.,157 163–197.Google Scholar
  4. Campolo, M., Degano, G. M., Soldati, A., and Cortelezzi. L., (2002). Numerical appraisal of jet-tocrossflow coupling in a transverse jet (this book )Google Scholar
  5. Cerbelli, S., Giusti, A., and Soldati, A., (2001). ADE approach to predicting dispersion of heavy particles in wall-bounded turbulence Int. J. Multiphase Flow, 27, 1861–1879.CrossRefzbMATHGoogle Scholar
  6. Chang, Y. K., and Vakili, A. D., (1995). Dynamics of vortex rings in crossflow Phys. Fluids, 7, 1583–1597.CrossRefGoogle Scholar
  7. Chein, R., and Chung, J. N., (1988). Simulation of particle dispersion in a two-dimensional mixing layer AIChE J., 34, 946–954.Google Scholar
  8. Chung, J. N., and Troutt, T. R., (1988). Simulation of particle dispersion in an axisymmetric jet J. Fluid Mech., 186, 199–222.CrossRefzbMATHGoogle Scholar
  9. Crowe, C. T., Chung, J. N., and Troutt, T. R., (1989). Particle mixing in free shear flows Progress of Energy Combustion Science J., 14, 171–194.CrossRefGoogle Scholar
  10. Davis, S. A., and Glezer, A., (1999). Mixing control of fuel jets using synthetic jet technology: velocity field measurements AIAA Paper 99–0447, 37th Aerospace Sciences Meeting, Reno, NV, 1–15.Google Scholar
  11. Degano, G. M., Campolo, M., Soldati, A., and Cortelezzi, L., (2002). Influence of inlet boundary conditions on the numerical calculation of a jet in crossflow Int. J. Heat and Fluid Flow, (submitted).Google Scholar
  12. Fric, T. F., and Rhosko, A., (1994). Vortical structure in the wake of a transverse jet J. Fluid Mech., 279, 1–47.CrossRefGoogle Scholar
  13. Germano, M., Piomelli, U., Moin, P., and Cabot, W. H., (1991). A dynamic subgrid-scale eddy-viscosity model Phys. Fluids, 3, 1760–1761.zbMATHGoogle Scholar
  14. Gosh, S., and Hunt, J. C. R., (1998). Spray jets in a cross-flow J. Fluid Mech., 365, 109–136.CrossRefMathSciNetGoogle Scholar
  15. Gosman, A. D., and Ioannides, E., (1981). Aspects of computer simulation of liquid-fueled combustors AIAA Paper 81–0323.Google Scholar
  16. Hasselbrink, E. F., and Mungal, M. G., (2001a). Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets J. Fluid Mech., 443, 1–25.zbMATHGoogle Scholar
  17. Hasselbrink, E. F., and Mungal, M. G., (2001b). Transverse jets and jet flames. Part 2. velocity and OHfield imaging J. Fluid Mech., 443, 27–68.Google Scholar
  18. Hsu, A. T., and Guo, Y. (2000). Unsteady simulation of a jet-in-crossflow Int. J. Comp. Fluid Dyn., 14, 41–53.CrossRefzbMATHMathSciNetGoogle Scholar
  19. Kelso, R. M., Lim, T. T., and Perry, A. E. (1996). An experimental study of round jets in a cross-flow J. Fluid Mech., 306, 111–144.CrossRefGoogle Scholar
  20. Lazaro, B. J., and Lasheras, J. C. (1992). Particle dispersion in the developing free shear layer. Part 1. The natural flow J. Fluid Mech., 235, 143–178.CrossRefGoogle Scholar
  21. Maxey, M. R., and Riley, J. J., (1983). equation of motion for a small rigid sphere in a nonuniform flow Phys. Fluids, 26, 883–889.Google Scholar
  22. Papaspyros, J. N. E., Kastrinakis, E. G., and Nychas, S. G. (1997). Coherent contribution to turbulent mixing of a jet in crossflow Appl. Sci. Res., 57, 291–307.CrossRefGoogle Scholar
  23. Rivero, A., Ferrè, J. A., and Giralt, F. (2001). Organized motions in a jet in crossflow J. Fluid Mech., 444, 117–149.CrossRefzbMATHGoogle Scholar
  24. Rudman, M. (1996). Simulation of the near field of a jet in a cross flow Exp. Thermal and Fluid Sci., 12, 134–141.CrossRefGoogle Scholar
  25. Salvetti, M. V., and Banerjee, S., (1995). A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations Phys. Fluids, 7, 2831–2847.CrossRefzbMATHGoogle Scholar
  26. Sani, R. L., and Gresho, P. M. (1994). Resume and remarks on the open boundary condition minisymposium Int. J. Num. Meth. Fluids, 18, 983–1008.CrossRefzbMATHMathSciNetGoogle Scholar
  27. Smith, S. H., and Mungal, M. G. (1998). Mixing, structure and scaling of the jet in crossflow J. Fluid Mech., 357, 83–122.CrossRefGoogle Scholar
  28. Wen, F., Kamalu, N., Chung, N. J., Crowe, C. T., and Troutt, T. R., (1992). Particle dispersion by vortex structures in plane mixing layers J. Fluid Eng., 114, 657–666.CrossRefGoogle Scholar
  29. Xia, L. P., and Lam, K. M. (1997). A vertical round jet issuing into an unsteady crossflow consisting of a mean current and a sinusoidal fluctuating component J. Wind Eng. Ind. Aerodyn., 67and68, 843–857.Google Scholar
  30. Yang, Y., Crowe, C. T., Chung, N. J., and Troutt, T. R., (2000). Experiments on particle dispersion in a plane wake Int. J. Multiphase Flow, 26, 1583–1607.CrossRefzbMATHGoogle Scholar
  31. Yuan, L. L., Street, R. L., and Ferziger, J. H. (1999). Large-eddy simulations of a round jet in crossflow J. Fluid Mech., 379, 71–104.CrossRefzbMATHGoogle Scholar
  32. Zhou, Q., and Leschziner, M. A., (1999). An improved particle-locating algorithm for Eulerian-Lagrangian computations of two-phase flow in general coordinates Int. J. Multiphase Flow, 25, 813–825.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Marina Campolo
    • 1
  • Massimiliano Fornasier
    • 1
  • Alfredo Soldati
    • 1
  1. 1.Centro di Fluidodinamica e Idraulica and Dipartimento di Scienze e Tecnologie ChimicheUniversity of UdineUdineItaly

Personalised recommendations