Jets in Crossflow — NOX Control Using the Two-Stage Lagrangian Model

  • M. G. Mungal
  • Donghee Han
Part of the International Centre for Mechanical Sciences book series (CISM, volume 439)


This paper presents results of the application of the Two-Stage Lagrangian (TSL) model of Broadwell and Lutz to the basic and advanced rebuming processes in a 300 kW natural gas fired Boiler Simulator Facility (BSF). The injection of the rebuming fuel and overtire air is modeled as independent deflected jets in crossflow and the TSL model is applied while each jet completely mixes with the main flue gas stream of the boiler. The entrainment rate to the jet, which is required as a model input, is derived from control volume analysis using the experimentally determined jet-trajectory. The comparison with the experimental data shows good agreement for relatively high reburn zone stoichiometric ratios (SR~0.99) while the removal of NO is overestimated for richer conditions (SR~0.95 or lower). The model in general follows the trend observed in the experiment and is able to quantitatively and rapidly predict the NO removal in the gas reburning process.


Stoichiometric Ratio Diffusion Flame Entrainment Rate Plug Flow Reactor Entrainment Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, H. A. and Yamazaki, S. (1978). Entrainment, momentum flux and temperature in vertical free turbulent diffusion flames, Combust. Flame 33: 123–149.CrossRefGoogle Scholar
  2. Bowman, C. T., Hanson, R. K., Davidson, D. F., Gardiner, W. C., Lissianski, V., Smith, G.P., Frenklach, M. and Goldenberg, M., (1995). “GRIMECH-2.11, gri_mech/.”Google Scholar
  3. Broadwell, J. E. (1982). A Model of Turbulent Diffusion Flames and Nitric Oxide Generation, Part I. TRW Document No. 38515–6001-UT-OG.Google Scholar
  4. Broadwell, J. E. and Breidenthal, R. (1982). A simple model of mixing and chemical reaction in a turbulent mixing layer. J. Fluid Mech. 125: 397–410.CrossRefGoogle Scholar
  5. Broadwell, J. E. and Lutz, A. E. (1998). A turbulent jet chemical reaction model: NOx production in jet flames, Combust. Flame 114: 319–335.CrossRefGoogle Scholar
  6. Broadwell, J. E. and Mungal, M. G. (1991). Large-Scale Structures and Molecular Mixing Phys. Fluids A 3 (5): 1193–1206.CrossRefGoogle Scholar
  7. Cha, C. M., Kramlich, J. C. and Kosâly, G. (1998). Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA.Google Scholar
  8. Donbar, J. M., Driscoll, J. F. and Carter, C. D. (1998). AIAA Thirty-sixth Aerospace Sciences Meeting and Exhibit, Reno, NV, Paper No. 98–0151.Google Scholar
  9. Glarborg, P., Alzueta, M. U., Dam-Johansen, K. and Miller, J. A. (1998). Kinetic modeling of hydrocarbon nitric oxide interactions in a flow reactor. Combust. Flame 115: 1–27.CrossRefGoogle Scholar
  10. Han, D., M. G. Mungal, V. M. Zamansky & T. J. Tyson (1999). Prediction of NOx Control by Basic and Advanced Gas Rebuming Using the Two-Stage Lagrangian Model, Combust. Flame, 119, 483–493.CrossRefGoogle Scholar
  11. Han, D., Orozco, V. and Mungal, M. G. (2000). Gross-Entrainment Behavior of Turbulent Jets Injected Obliquely into a Uniform Crossflow, AIAA Jr., 38 (9), 1643–1649.CrossRefGoogle Scholar
  12. Hasselbrink, E. F. and Mungal, M. G. (1996). An analysis of the time-averaged properties of the far field of the transverse jet, AIAA Thirty-fourth Aerospace Sciences Meeting and Exhibit, Reno, NV, Paper No. 96–0201.Google Scholar
  13. Kee, R. J., Rupley, F. M. and Miller, J. A. (1992). Chemkin II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, Sandia National Laboratories Report No. SAND898009.Google Scholar
  14. Margason, R. J. (1968). The Path of a Jet Directed at Large Angles to a Subsonic Free Stream, NASA TN D-4919.Google Scholar
  15. Miller, J. A., Durant, J. L. and Glarborg, P. (1998). Western States Section/The Combustion Institute 1998 Spring Meeting, Berkeley, CA, Paper No. 98S - 15.Google Scholar
  16. Mungal, M. G., P. S. Karasso and A. Lozano (1991). The Visible Structure of Turbulent Jet Diffusion Flames–Large-Scale Organization and Flame Tip Oscillation, Comb. Sci. & Tech., 76, 165–185.CrossRefGoogle Scholar
  17. Mungal, M. G., A. Lozano & I. van Cruyningen (1992). Large-Scale Dynamics in High Reynolds Number Jets and Jet Flames, Expts. Fluids, 12, 141–150.CrossRefGoogle Scholar
  18. Platten, J. L. and Keffer, J. F. (1971). J. Applied Mech, Trans ASME v 38 Ser E n 4: 756–758.Google Scholar
  19. Pratte, B. D. and Baines, W. D. (1967). Profiles of a round turbulent jet in a cross flow, J. Hyd. Div., Amer. Soc. Civ. Eng., HY6: 53–64.Google Scholar
  20. Storms, K. R., (1965). Low-Speed Wind Tunnel Investigation of a Jet Directed Normal to the Wind, Rep. 885, Aeronautics Lab., University of Washington.Google Scholar
  21. Takagi, T., Shin, H. D. and Ishio, A. (1981). Properties of turbulence in turbulent diffusion flames, Combust. Flame 40: 121–140.CrossRefGoogle Scholar
  22. Tyson, T. J., Kau, C. J. and Broadwell, J. E. (1981). “A Model of Turbulent Diffusion Flames and Nitric Oxide Generation, Part II,” Energy and Environmental Research Corporation.Google Scholar
  23. Wu, J. (1973). Near-field trajectory of turbulent jets discharged at various inclinations into a uniform crossflow. AIAA J. v 11, n 11: 1579–1581.CrossRefGoogle Scholar
  24. Zamansky, V. M., Maly, P. M., Ho, L., Lissianski, V., Rusli, D. and Gardiner, W. C., (1998). Twentyseventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA.Google Scholar
  25. Zamansky, V. M., Maly, P. M. and Ho, L. (1997). Proceedings of the 1997 ASME International Joint Power Generation Conference, Denver, CO.Google Scholar
  26. Zamansky, V. M., Sheldon, M. S. and Maly P. M. (1998). Western States Section/The Combustion Institute 1998 Spring Meeting, Berkeley, CA, Paper No. 98S - 30.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • M. G. Mungal
    • 1
  • Donghee Han
    • 1
  1. 1.Mechanical Engineering DepartmentStanford UniversityStanfordUSA

Personalised recommendations