Skip to main content

Jets in Crossflow — NOX Control Using the Two-Stage Lagrangian Model

  • Chapter
Manipulation and Control of Jets in Crossflow

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 439))

  • 372 Accesses

Abstract

This paper presents results of the application of the Two-Stage Lagrangian (TSL) model of Broadwell and Lutz to the basic and advanced rebuming processes in a 300 kW natural gas fired Boiler Simulator Facility (BSF). The injection of the rebuming fuel and overtire air is modeled as independent deflected jets in crossflow and the TSL model is applied while each jet completely mixes with the main flue gas stream of the boiler. The entrainment rate to the jet, which is required as a model input, is derived from control volume analysis using the experimentally determined jet-trajectory. The comparison with the experimental data shows good agreement for relatively high reburn zone stoichiometric ratios (SR~0.99) while the removal of NO is overestimated for richer conditions (SR~0.95 or lower). The model in general follows the trend observed in the experiment and is able to quantitatively and rapidly predict the NO removal in the gas reburning process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker, H. A. and Yamazaki, S. (1978). Entrainment, momentum flux and temperature in vertical free turbulent diffusion flames, Combust. Flame 33: 123–149.

    Article  Google Scholar 

  • Bowman, C. T., Hanson, R. K., Davidson, D. F., Gardiner, W. C., Lissianski, V., Smith, G.P., Frenklach, M. and Goldenberg, M., (1995). “GRIMECH-2.11, http://www.me.berkeley.edu/ gri_mech/.”

    Google Scholar 

  • Broadwell, J. E. (1982). A Model of Turbulent Diffusion Flames and Nitric Oxide Generation, Part I. TRW Document No. 38515–6001-UT-OG.

    Google Scholar 

  • Broadwell, J. E. and Breidenthal, R. (1982). A simple model of mixing and chemical reaction in a turbulent mixing layer. J. Fluid Mech. 125: 397–410.

    Article  Google Scholar 

  • Broadwell, J. E. and Lutz, A. E. (1998). A turbulent jet chemical reaction model: NOx production in jet flames, Combust. Flame 114: 319–335.

    Article  Google Scholar 

  • Broadwell, J. E. and Mungal, M. G. (1991). Large-Scale Structures and Molecular Mixing Phys. Fluids A 3 (5): 1193–1206.

    Article  Google Scholar 

  • Cha, C. M., Kramlich, J. C. and Kosâly, G. (1998). Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA.

    Google Scholar 

  • Donbar, J. M., Driscoll, J. F. and Carter, C. D. (1998). AIAA Thirty-sixth Aerospace Sciences Meeting and Exhibit, Reno, NV, Paper No. 98–0151.

    Google Scholar 

  • Glarborg, P., Alzueta, M. U., Dam-Johansen, K. and Miller, J. A. (1998). Kinetic modeling of hydrocarbon nitric oxide interactions in a flow reactor. Combust. Flame 115: 1–27.

    Article  Google Scholar 

  • Han, D., M. G. Mungal, V. M. Zamansky & T. J. Tyson (1999). Prediction of NOx Control by Basic and Advanced Gas Rebuming Using the Two-Stage Lagrangian Model, Combust. Flame, 119, 483–493.

    Article  Google Scholar 

  • Han, D., Orozco, V. and Mungal, M. G. (2000). Gross-Entrainment Behavior of Turbulent Jets Injected Obliquely into a Uniform Crossflow, AIAA Jr., 38 (9), 1643–1649.

    Article  Google Scholar 

  • Hasselbrink, E. F. and Mungal, M. G. (1996). An analysis of the time-averaged properties of the far field of the transverse jet, AIAA Thirty-fourth Aerospace Sciences Meeting and Exhibit, Reno, NV, Paper No. 96–0201.

    Google Scholar 

  • Kee, R. J., Rupley, F. M. and Miller, J. A. (1992). Chemkin II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, Sandia National Laboratories Report No. SAND898009.

    Google Scholar 

  • Margason, R. J. (1968). The Path of a Jet Directed at Large Angles to a Subsonic Free Stream, NASA TN D-4919.

    Google Scholar 

  • Miller, J. A., Durant, J. L. and Glarborg, P. (1998). Western States Section/The Combustion Institute 1998 Spring Meeting, Berkeley, CA, Paper No. 98S - 15.

    Google Scholar 

  • Mungal, M. G., P. S. Karasso and A. Lozano (1991). The Visible Structure of Turbulent Jet Diffusion Flames–Large-Scale Organization and Flame Tip Oscillation, Comb. Sci. & Tech., 76, 165–185.

    Article  Google Scholar 

  • Mungal, M. G., A. Lozano & I. van Cruyningen (1992). Large-Scale Dynamics in High Reynolds Number Jets and Jet Flames, Expts. Fluids, 12, 141–150.

    Article  Google Scholar 

  • Platten, J. L. and Keffer, J. F. (1971). J. Applied Mech, Trans ASME v 38 Ser E n 4: 756–758.

    Google Scholar 

  • Pratte, B. D. and Baines, W. D. (1967). Profiles of a round turbulent jet in a cross flow, J. Hyd. Div., Amer. Soc. Civ. Eng., HY6: 53–64.

    Google Scholar 

  • Storms, K. R., (1965). Low-Speed Wind Tunnel Investigation of a Jet Directed Normal to the Wind, Rep. 885, Aeronautics Lab., University of Washington.

    Google Scholar 

  • Takagi, T., Shin, H. D. and Ishio, A. (1981). Properties of turbulence in turbulent diffusion flames, Combust. Flame 40: 121–140.

    Article  Google Scholar 

  • Tyson, T. J., Kau, C. J. and Broadwell, J. E. (1981). “A Model of Turbulent Diffusion Flames and Nitric Oxide Generation, Part II,” Energy and Environmental Research Corporation.

    Google Scholar 

  • Wu, J. (1973). Near-field trajectory of turbulent jets discharged at various inclinations into a uniform crossflow. AIAA J. v 11, n 11: 1579–1581.

    Article  Google Scholar 

  • Zamansky, V. M., Maly, P. M., Ho, L., Lissianski, V., Rusli, D. and Gardiner, W. C., (1998). Twentyseventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA.

    Google Scholar 

  • Zamansky, V. M., Maly, P. M. and Ho, L. (1997). Proceedings of the 1997 ASME International Joint Power Generation Conference, Denver, CO.

    Google Scholar 

  • Zamansky, V. M., Sheldon, M. S. and Maly P. M. (1998). Western States Section/The Combustion Institute 1998 Spring Meeting, Berkeley, CA, Paper No. 98S - 30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Mungal, M.G., Han, D. (2003). Jets in Crossflow — NOX Control Using the Two-Stage Lagrangian Model. In: Karagozian, A.R., Cortelezzi, L., Soldati, A. (eds) Manipulation and Control of Jets in Crossflow. International Centre for Mechanical Sciences, vol 439. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2792-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2792-6_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00753-2

  • Online ISBN: 978-3-7091-2792-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics