Advertisement

Control of Micromixers, Jets, and Turbine Cooling using Evolution Strategies

  • Sibylle D. Müller
  • Petros Koumoutsakos
Part of the International Centre for Mechanical Sciences book series (CISM, volume 439)

Abstract

We present a class of evolution strategies and we discuss three engineering applications in the fields of mixing control and turbomachinery: (i) flow in micromixers, (ii) jet flow, and (iii) turbine cooling. Evolution strategies are chosen as optimization method as they are capable of handling noisy and multimodal functions, inherent to these applications, in an automated fashion.

Keywords

Evolution Strategy Side Channel Film Cool Vortex Filament Secondary Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansen, N., Ostermeier, A., “Convergence Properties of Evolution Strategies with the Derandomized Covariance Matrix Adaptation: The (µ/p’, A)-CMA-ES,” Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT’97), pp. 650–654, 1997.Google Scholar
  2. 2.
    Rechenberg, I., “Evolutionsstrategie: Optimierung technischer System nach Prinzipien der biologischen Evolution,” Fromann-Holzboog, Stuttgart, 1973.Google Scholar
  3. 3.
    Schwefel, H.-P., “Evolution and Optimum Seeking,” John Wiley and Sons, New York, 1995.Google Scholar
  4. 4.
    Hansen, N., Ostermeier, A., “Adapting Arbitrary Normal Mutation Distributions in Evolution Strategies: The Covariance Matrix Adaptation,” Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC’96), pp. 312–317, 1996.Google Scholar
  5. 5.
    Ostermeier, A., “Schrittweitenadaptation in der Evolutionsstrategie mit einem entstochastisierten Ansatz.” Dissertation, Fachbereich 6 der Technische Universität Berlin, 1997.Google Scholar
  6. 6.
    Hansen, N., “Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrategie: Eine Untersuchung zur entstochastisierten, koordinatensystemunabhängigen Adaptation der Mutationsverteilung,” Mensch & Buch Verlag, Berlin, 1998.Google Scholar
  7. 7.
    J.E. Martin and E. Meiburg, “Numerical investigation of three-dimensionally evolving jets under helical perturbations,” Journal of Fluid Mechanics, Vol. 243, pp. 457–487, 1992.CrossRefGoogle Scholar
  8. 8.
    J.E. Martin, Personal communication, 2001.Google Scholar
  9. 9.
    Volpert, M., Mezic, I., Meinhart, C.D., Dahleh, M., “Modeling and Analysis of Mixing in an Actively Controlled Micromixer,” Unpublished report, University of Santa Barbara, CA, 2000.Google Scholar
  10. 10.
    McGreehan, W.F., Schotsch, M.J. “Flow characteristics of long orifices with rotation and corner radiusing,” ASME paper 87-GT-162, 1987.Google Scholar
  11. 11.
    Goldstein, R.J., “Film cooling,” Advances in Heat Transfer, Vol. 7, pp. 321–379, 1971.CrossRefGoogle Scholar
  12. 12.
    Seller, J.P., “Gaseous film cooling with multiple ejection stations,” AIAA Journal, Vol. 1, No. 9, pp. 2154–2156, 1963.CrossRefGoogle Scholar
  13. 13.
    Bestle, D., “Analyse und Optimierung von Mehrkörpersystemen,” Springer, Berlin, 1993.Google Scholar
  14. 14.
    Star-CD User Manual,Computational Dynamics Ltd., London, 1997.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Sibylle D. Müller
    • 1
  • Petros Koumoutsakos
    • 1
    • 2
  1. 1.Institute of Computational SciencesSwiss Federal Institute of Technology (ETH)ZürichSwitzerland
  2. 2.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations