Skip to main content

Reduced-order controllers for fluid mechanics applications

  • Chapter
Manipulation and Control of Jets in Crossflow

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 439))

Abstract

Controller complexity is a crucial parameter for control in engineering applications. Controllers with a large number of states are of no practical interest because of the amount of hardware and computer power necessary to compute a real-time control law. Consequently, it is crucial to reduce the order of the controller. This summary provides a background on some techniques useful for deriving reduced-order controllers for fluid mechanics applications, setting the stage for the specific topics described later in this text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown, C. E., and Michael, W. H. 1954 Effect of leading-edge separation on the lift of a delta wing, J. Aero. Sci. 21, 690.

    Article  MATH  Google Scholar 

  • Chorin, J. 1973 Numerical study of slightly viscous flows, J. Fluid Mech. 57, 785.

    Article  MathSciNet  Google Scholar 

  • Cortelezzi, L., and Leonard, A. 1993 Point vortex model for the unsteady separated flow past a semi-infinite plate with transverse motion, Fluid Dynamics Research 11, 263.

    Article  Google Scholar 

  • Cortelezzi, L., Leonard, A., and Doyle, J. C. 1994 An example of active circulation control of the unsteady separated flow past a semi-infinite plate, Journal of Fluid Mechanics 260, 127.

    Article  Google Scholar 

  • Cortelezzi, L. 1996 Nonlinear Feedback Control of the Wake Past a Plate with a Suction Point on the Downstream Wall, Journal of Fluid Mechanics 327, 303.

    Article  MATH  Google Scholar 

  • Cortelezzi, L., Chen, Y-C., and Chang, H-L. 1997 Nonlinear Feedback Control of the Wake Past a Plate: from a Low-Order Model to a Higher-Order Model, Physics of Fluids 9, (7), 2009–2022.

    Article  MATH  MathSciNet  Google Scholar 

  • Cortelezzi, L., and Speyer, J. L. 1998 Robust Reduced-Order Controller of Laminar Boundary Layer Transitions, Physical Review E 58, (2), 1906.

    Article  Google Scholar 

  • Cortelezzi, L., Lee, K-H., Kim, J., and Speyer, J. L. 1998 Skin-Friction Drag Reduction Via Robust Reduced-Order Linear Feedback Control, Physics of Fluids 11, (1–2), 79.

    MATH  Google Scholar 

  • Dunstan, W.J., Bitmead, R. R. and Savaresi, S. M. 2001 Fitting nonlinear low-order models for combustion instability control, Control Engineering Practice 9, (12), 1301.

    Article  Google Scholar 

  • Farrell, B. F. 1988 Optimal excitation of perturbations in viscous shear flows, Phys. Fluids 31, (8), 2093.

    Article  Google Scholar 

  • Gadelhak, M. 2001 Flow control: The future, J. Aircraft, 38, (3), 402.

    Article  Google Scholar 

  • Gadelhak, M. 1999 Interactive control of turbulent boundary layers — A futuristic overview, Aim Journal, 32, (9), 1753.

    Google Scholar 

  • Graham, W. R., Peraire, J. and Tang, K. Y. 1999 Optimal control of vortex shedding using low-order models. Part II — Model-based control, Int. Journal for Numerical Methods in Fluids 44, (7), 973.

    MathSciNet  Google Scholar 

  • Guckenheimer, J., and Holmes, P. 1983 Nonlinear oscillations, dynamical systems, and bifurcation of vector fields, Springer-Verlag, New York.

    Book  Google Scholar 

  • Ho, C. M. and Tai, Y.C. 1996 Review — Mems and its applications for flow control, J. Fluids Eng. — Trans. Amse 118, 437.

    Article  Google Scholar 

  • Joshi, S. S., Speyer, J. L. & Kim, J. 1997 A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow, J. Fluid Mech. 332, 157.

    MATH  Google Scholar 

  • Kang, S. M., Ryder, V., Cortelezzi, L. and Speyer, J. L. 1999 State-space formulation and control design for three-dimensional channel flows, American Control Conference, San Diego, California, 2–4 June 1999.

    Google Scholar 

  • Kang, S. M., Cortelezzi, L. and Speyer, J. L. 1999 Performance of a linear controller for laminar boundary layer transition in three-dimensional channel flow, Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona, 7–10 December, 1999.

    Google Scholar 

  • Lee, K-H., Cortelezzi, L., Kim, J. and Speyer, J. L. 2001 Application of reduced-order controller to turbulent flows for drag reduction, Physics of Fluidsl 3, (5), 1321.

    Article  Google Scholar 

  • Lofdahl, L. and Gadelhak, M. 1999 Mems applications in turbulence and flow control, Prog. in Aerospace Sciences,35, (2), 101.

    Google Scholar 

  • Lucia, D. J., Pachter, M. and Beran, P. S. 2002 Rocket nozzle flow control using a reduced-order computational fluid dynamics model, Journal of Guidance Control and Dynamics 25, (3), 449.

    Article  Google Scholar 

  • M’Closkey, R. T., King, J., Cortelezzi, L. and Karagozian, A. R. 2002 The actively controlled jet in crossflow, J. Fluid Mech. 452, 325.

    MATH  Google Scholar 

  • M’ Closkey, R. T., King, J., Cortelezzi, L. and Karagozian, A. R. 2002 Active control of jets in crossflow In Manipulation and Control of Transverse Jets, Springer-Verlag.

    Google Scholar 

  • Rao, D. M. 1987 Vortical flow management techniques, Prog. Aerospace Sci. 24, 173.

    Article  Google Scholar 

  • Raveh, D. E. 2001 Reduced-order models for unsteady aerodynamics, AL4A Journal 39, (8), 1417–1429.

    Google Scholar 

  • Ravindran, S. S. 2000 A reduced-order approach for optimal control of fluids using proper orthogonal decomposition, Int. Journal for Numerical Methods in Fluids 34, (5), 425.

    Article  MATH  MathSciNet  Google Scholar 

  • Rediniotis, O. K., Ko, J. and Kurdila, A. J. 2002 Reduced order nonlinear Navier-Stokes models for synthetic jets, Journal of Fluids Engineering — Transactions of th Asme 124, (2), 433–443.

    Article  Google Scholar 

  • Rhee, I. and Speyer, J. L. 1996 A game theoretic approach to a finite-time disturbance attenuation problem, Ieee Trans. Automatic Control 36, (9), 1021.

    Article  MathSciNet  Google Scholar 

  • Rott, N. 1956 Diffraction of a weak shock with vortex generation, J. Fluid Mech. 1, 111.

    Article  MATH  MathSciNet  Google Scholar 

  • Sarpkaya 1989 Computational methods with vortices — The 1988 Freeman Scholar Lecture, Asme J. Fluids Eng. 111, 5.

    Article  Google Scholar 

  • Sarpkaya 1994 Vortex element methods for flow simulation, Advance in Applied Mechanics 31, 113.

    Article  Google Scholar 

  • Tang, S. and Aubry, N. 2000 Suppression of vortex shedding inspired by a low-dimensional model, J. Fluids and Structures 14, (4), 443.

    Article  Google Scholar 

  • Zhou, K., Doyle, J. C. and Glover K. 1996 Robust and optimal control Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Cortelezzi, L. (2003). Reduced-order controllers for fluid mechanics applications. In: Karagozian, A.R., Cortelezzi, L., Soldati, A. (eds) Manipulation and Control of Jets in Crossflow. International Centre for Mechanical Sciences, vol 439. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2792-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2792-6_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00753-2

  • Online ISBN: 978-3-7091-2792-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics