Reduced-order controllers for fluid mechanics applications

  • Luca Cortelezzi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 439)


Controller complexity is a crucial parameter for control in engineering applications. Controllers with a large number of states are of no practical interest because of the amount of hardware and computer power necessary to compute a real-time control law. Consequently, it is crucial to reduce the order of the controller. This summary provides a background on some techniques useful for deriving reduced-order controllers for fluid mechanics applications, setting the stage for the specific topics described later in this text.


Drag Reduction Bottom Wall Point Vortex Vortex Sheet Bottom Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, C. E., and Michael, W. H. 1954 Effect of leading-edge separation on the lift of a delta wing, J. Aero. Sci. 21, 690.CrossRefzbMATHGoogle Scholar
  2. Chorin, J. 1973 Numerical study of slightly viscous flows, J. Fluid Mech. 57, 785.CrossRefMathSciNetGoogle Scholar
  3. Cortelezzi, L., and Leonard, A. 1993 Point vortex model for the unsteady separated flow past a semi-infinite plate with transverse motion, Fluid Dynamics Research 11, 263.CrossRefGoogle Scholar
  4. Cortelezzi, L., Leonard, A., and Doyle, J. C. 1994 An example of active circulation control of the unsteady separated flow past a semi-infinite plate, Journal of Fluid Mechanics 260, 127.CrossRefGoogle Scholar
  5. Cortelezzi, L. 1996 Nonlinear Feedback Control of the Wake Past a Plate with a Suction Point on the Downstream Wall, Journal of Fluid Mechanics 327, 303.CrossRefzbMATHGoogle Scholar
  6. Cortelezzi, L., Chen, Y-C., and Chang, H-L. 1997 Nonlinear Feedback Control of the Wake Past a Plate: from a Low-Order Model to a Higher-Order Model, Physics of Fluids 9, (7), 2009–2022.CrossRefzbMATHMathSciNetGoogle Scholar
  7. Cortelezzi, L., and Speyer, J. L. 1998 Robust Reduced-Order Controller of Laminar Boundary Layer Transitions, Physical Review E 58, (2), 1906.CrossRefGoogle Scholar
  8. Cortelezzi, L., Lee, K-H., Kim, J., and Speyer, J. L. 1998 Skin-Friction Drag Reduction Via Robust Reduced-Order Linear Feedback Control, Physics of Fluids 11, (1–2), 79.zbMATHGoogle Scholar
  9. Dunstan, W.J., Bitmead, R. R. and Savaresi, S. M. 2001 Fitting nonlinear low-order models for combustion instability control, Control Engineering Practice 9, (12), 1301.CrossRefGoogle Scholar
  10. Farrell, B. F. 1988 Optimal excitation of perturbations in viscous shear flows, Phys. Fluids 31, (8), 2093.CrossRefGoogle Scholar
  11. Gadelhak, M. 2001 Flow control: The future, J. Aircraft, 38, (3), 402.CrossRefGoogle Scholar
  12. Gadelhak, M. 1999 Interactive control of turbulent boundary layers — A futuristic overview, Aim Journal, 32, (9), 1753.Google Scholar
  13. Graham, W. R., Peraire, J. and Tang, K. Y. 1999 Optimal control of vortex shedding using low-order models. Part II — Model-based control, Int. Journal for Numerical Methods in Fluids 44, (7), 973.MathSciNetGoogle Scholar
  14. Guckenheimer, J., and Holmes, P. 1983 Nonlinear oscillations, dynamical systems, and bifurcation of vector fields, Springer-Verlag, New York.CrossRefGoogle Scholar
  15. Ho, C. M. and Tai, Y.C. 1996 Review — Mems and its applications for flow control, J. Fluids Eng. — Trans. Amse 118, 437.CrossRefGoogle Scholar
  16. Joshi, S. S., Speyer, J. L. & Kim, J. 1997 A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow, J. Fluid Mech. 332, 157.zbMATHGoogle Scholar
  17. Kang, S. M., Ryder, V., Cortelezzi, L. and Speyer, J. L. 1999 State-space formulation and control design for three-dimensional channel flows, American Control Conference, San Diego, California, 2–4 June 1999.Google Scholar
  18. Kang, S. M., Cortelezzi, L. and Speyer, J. L. 1999 Performance of a linear controller for laminar boundary layer transition in three-dimensional channel flow, Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona, 7–10 December, 1999.Google Scholar
  19. Lee, K-H., Cortelezzi, L., Kim, J. and Speyer, J. L. 2001 Application of reduced-order controller to turbulent flows for drag reduction, Physics of Fluidsl 3, (5), 1321.CrossRefGoogle Scholar
  20. Lofdahl, L. and Gadelhak, M. 1999 Mems applications in turbulence and flow control, Prog. in Aerospace Sciences,35, (2), 101.Google Scholar
  21. Lucia, D. J., Pachter, M. and Beran, P. S. 2002 Rocket nozzle flow control using a reduced-order computational fluid dynamics model, Journal of Guidance Control and Dynamics 25, (3), 449.CrossRefGoogle Scholar
  22. M’Closkey, R. T., King, J., Cortelezzi, L. and Karagozian, A. R. 2002 The actively controlled jet in crossflow, J. Fluid Mech. 452, 325.zbMATHGoogle Scholar
  23. M’ Closkey, R. T., King, J., Cortelezzi, L. and Karagozian, A. R. 2002 Active control of jets in crossflow In Manipulation and Control of Transverse Jets, Springer-Verlag.Google Scholar
  24. Rao, D. M. 1987 Vortical flow management techniques, Prog. Aerospace Sci. 24, 173.CrossRefGoogle Scholar
  25. Raveh, D. E. 2001 Reduced-order models for unsteady aerodynamics, AL4A Journal 39, (8), 1417–1429.Google Scholar
  26. Ravindran, S. S. 2000 A reduced-order approach for optimal control of fluids using proper orthogonal decomposition, Int. Journal for Numerical Methods in Fluids 34, (5), 425.CrossRefzbMATHMathSciNetGoogle Scholar
  27. Rediniotis, O. K., Ko, J. and Kurdila, A. J. 2002 Reduced order nonlinear Navier-Stokes models for synthetic jets, Journal of Fluids Engineering — Transactions of th Asme 124, (2), 433–443.CrossRefGoogle Scholar
  28. Rhee, I. and Speyer, J. L. 1996 A game theoretic approach to a finite-time disturbance attenuation problem, Ieee Trans. Automatic Control 36, (9), 1021.CrossRefMathSciNetGoogle Scholar
  29. Rott, N. 1956 Diffraction of a weak shock with vortex generation, J. Fluid Mech. 1, 111.CrossRefzbMATHMathSciNetGoogle Scholar
  30. Sarpkaya 1989 Computational methods with vortices — The 1988 Freeman Scholar Lecture, Asme J. Fluids Eng. 111, 5.CrossRefGoogle Scholar
  31. Sarpkaya 1994 Vortex element methods for flow simulation, Advance in Applied Mechanics 31, 113.CrossRefGoogle Scholar
  32. Tang, S. and Aubry, N. 2000 Suppression of vortex shedding inspired by a low-dimensional model, J. Fluids and Structures 14, (4), 443.CrossRefGoogle Scholar
  33. Zhou, K., Doyle, J. C. and Glover K. 1996 Robust and optimal control Prentice Hall.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Luca Cortelezzi
    • 1
  1. 1.Department of Mechanical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations