Skip to main content

Background on and Applications of Jets in Crossflow

  • Chapter
Manipulation and Control of Jets in Crossflow

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 439))

Abstract

The jet in crossflow or transverse jet has been studied extensively because of its relevance to a wide variety of flows in technological systems, including fuel or dilution air injection in gas turbine engines, thrust vector control for high speed airbreathing and rocket vehicles, and exhaust plumes from power plants. These widespread applications have led over the past 50+ years to experimental, theoretical, and numerical examinations of this fundamental flowfield. This summary provides a background on these studies and applications, setting the stage for the specific topics described later in this text which are relevant to transverse jet modeling, manipulation, and control.

Work by this author on transverse jets has been supported over the years by NASA Dryden and Glenn Research Centers, by the CEC Energy Innovations Small Grants program, and by the University of California Energy Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbitt, J. D. III, Segal, C., McDaniel, J. C., Krauss, R. H., and Whitehurst, R. B. (1993). Experimental Supersonic Hydrogen Combustion Employing Staged Injection Behind a Rearward-Facing Step. In J. Propul. Power, 9: 472–478.

    Google Scholar 

  • Beer, J. and Chigier, N. (1972). Combustion Aerodynamics,Kreiger Publishing Company.

    Google Scholar 

  • Bowman, C. T. (1992). Control of Combustion-Generated Nitrogen Oxide Emissions: Technology Driven by Regulation. In 24th Symposium (Intl.) on Combustion, pp. 859–878.

    Google Scholar 

  • Brancher, P., Chomaz, J. M., and Huerre, P. (1994). Direct numerical simulations of round jets: Vortex induction and side jets. In Physics of Fluids, 6 (5), pp. 1768–1774.

    Google Scholar 

  • Broadwell, J. E. and Breidenthal, R. E. (1984). Structure and mixing of a transverse jet in incompressible flow. In J. Fluid Mech., 148: 405–412.

    Google Scholar 

  • Brzustowski, T. A. (1977). In Turbulent Combustion: Progress in Astronautics and Aeronautics,58:407–430.

    Google Scholar 

  • Cortelezzi, L. and Karagozian, A. R. (2001). On the Formation of the Counter-Rotating Vortex Pair in Transverse Jets. In J. Fluid Mech., 446: 347–373.

    Google Scholar 

  • Cortelezzi, L. and Karagozian, A. R. (2003). Three-dimensional vortex modeling of unforced transverse jets. In Manipulation and Control of Transverse Jets,Springer-Wein, New York.

    Google Scholar 

  • Curran, E. T. (2002). Scramjet engines: The first forty years. In J. Propul. Power, 17 (6): 1138–1148.

    Google Scholar 

  • Fearn, R. and Weston, R. (1974). Vorticity associated with a jet in a cross flow. In AIAA J., 12: 1666–1671.

    Google Scholar 

  • Freund, J.B., Lele, S.K., and Moin, P. (2000). Numerical simulation of a Mach 1.92 turbulent jet and its sound field. In AIAA J., 38 (11), pp. 2023–2031.

    Google Scholar 

  • Fric, T. F. and Roshko, A. (1994). Vortical structure in the wake of a transverse jet. In J. Fluid Mech., 279: 1–47.

    Google Scholar 

  • Gortler, H. (1942). In Z. Angew Math. Mech, 22: 244–254.

    Article  MathSciNet  Google Scholar 

  • Hasselbrink, E. F., Jr. and Mungal, M. G. (2001). Transverse Jets and Jet Flames. Part 2. Velocity and OH Field Imaging. In J. Fluid Mech., 443: 27–68.

    Google Scholar 

  • Heister, S. D., Nguyen, T. T., and Karagozian, A. R. (1989). Modeling of Liquid Jets Injected Transversely into a Supersonic Crossflow. In AIAA J. 27: 1727–1734.

    Google Scholar 

  • Heister, S. D. and Karagozian, A. R. (1990a). Vortex Modeling of Gaseous Jets in a Compressible Cross Flow. In J. Prop. Power, 6: 85–92.

    Google Scholar 

  • Heister, S. D. and Karagozian, A. R. (1990b). Gaseous Jet in Supersonic Crossflow. In AIM J., 28: 819–827.

    Google Scholar 

  • Hill, P. G. and Peterson, C. R. (1992). Mechanics and Thermodynamics of Propulsion,2nd Ed., Addison-Wesley Publishing Co.

    Google Scholar 

  • Holdeman, J. D. (1993). Mixing of Multiple Jets with a Confined Subsonic Crossflow. In Prog. Energy Comb. Sci., 19 (1): 31–70.

    Google Scholar 

  • Huerre, P. and Monkewitz, P. A. (1990). Local and Global Instabilities in Spatially Developing Rows, In Ann. Rev. Fluid Mech., 22: 473–537.

    Google Scholar 

  • Humble, R. W., Henry, G. N., and Larson, W. J. (1995). Space Propulsion Analysis and Design, Revised edition, Mc-Graw-Hill Publishing Co.

    Google Scholar 

  • Kailasanath, P., Sreenivasan, K. R., and Saylor, J. R. (1993). Conditional Scalar Dissipation Rates in Turbulent Wakes, Jets, and Boundary Layers. In Phys. Fluids A, 5 (12): 3207–3215.

    Google Scholar 

  • Kamotani, Y., and Greber, I. (1972) Experiments on a turbulent jet in a cross flow. In AIM J., 10: 14251429.

    Google Scholar 

  • Karagozian, A. R. (1986a). The flame structure and vorticity generated by a chemically reacting transverse jet. In AIAA J., 24: 1502–1507.

    Google Scholar 

  • Karagozian, A. R. (1986b). An analytical model for the vorticity associated with a transverse jet. In AIAA J., 24: 429–436.

    Google Scholar 

  • Karagozian, A. R. and Nguyen, T. T. (1986). Effects of heat release and flame distortion in the transverse fuel jet. In 21st Symp. (Intl.) on Combustion, 1271–1279.

    Google Scholar 

  • Karagozian, A. R., Nguyen, T. T., and Kim, C. N. (1986). Vortex modeling of single and multiple dilution jet mixing in a crossflow. In J. Propul. Power, 2 (4): 354–360.

    Google Scholar 

  • Karagozian, A. R., Wang, K. C., Le, A.-T., and Smith, O. I. (1996). Transverse Gas Jet Injection Behind a Rearward-Facing Step In J. Propul. Power, 12: 1129–1136.

    Article  Google Scholar 

  • Kelso, R. M. and Smits, A. J. (1995). Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet. In Phys. Fluids, 7: 153–158.

    Google Scholar 

  • Kelso, R. M., Lim, T T., and Perry, A. E. (1996). An experimental study of round jets in cross-flow. In J. Fluid Mech., 306: 111–144.

    Google Scholar 

  • Kerrebrock, J. L., (1977). Aircraft Engines and Gas Turbines,The MIT Press.

    Google Scholar 

  • Krothapalli, A., Lourenco, L., and Buchlin, J. M. (1990). Separated flow upstream of a jet in a crossflow. In AIM J. 28: 414–420.

    Google Scholar 

  • Liepmann, D. (1991). Streamwise Vorticity and Entrainment in the Near Field of a Round Jet. In Phys. Fluids A, 3 (5): 1179–1185.

    Google Scholar 

  • Lim, T. T., Kelso, R. M., and Perry, A. E. (1998). A visual study of vortex rings fired transversely into a crossflow. In 3th Australian Fluid Mechanics Conference,Monash University, Melbourne, Australia.

    Google Scholar 

  • Lim, T.T., New, T.H., and Luo, S.C. (2001). On the development of large-scale structures of a jet normal to a cross flow. In Phys. Fluids, 13 (3): 770–775.

    Google Scholar 

  • Margason, R. J. (1993). Computational and Experimental Assessment of Jets in Cross Flow. In AGARDCP-534, 1: 1–141.

    Google Scholar 

  • M’Closkey, R. T., King, J. M., Cortelezzi, L., and Karagozian, A. R. (2002). The actively controlled jet in crossflow. In J. Fluid Mech., Vol. 452, pp. 325–335.

    Google Scholar 

  • M’Closkey, R. T., King, J. M., Cortelezzi, L., and Karagozian, A. R., (2003). The actively controlled jet in crossflow. In Manipulation and Control of Transverse Jets,Springer-Wein, New York.

    Google Scholar 

  • McMillin, B. K., Seitzman, J. M., and Hanson, R. K. (1994). Comparison of NO and OH Planar Fluorescence Temperature Measurements in Scramjet Model Flowfields. In AIAA J., 32 (10): 1945–1952.

    Google Scholar 

  • Mungal, M. G. and Hasselbrink, E. E, Jr. (2003). Jets in Crossflow - Effects of Heat Release. In Manipulation and Control of Transverse Jets,Springer-Wein, New York.

    Google Scholar 

  • Mungal, M. G. and Smith, S. H. (2003). Jets in Crossflow - Scalar Mixing via PLIF. In Manipulation and Control of Transverse Jets, Springer-Wein, New York.

    Google Scholar 

  • Nguyen, T. T. and Karagozian, A. R. (1992). A Liquid Fuel Jet in Subsonic Crossflow. In J. Propul. Power, 8: 21–29.

    Google Scholar 

  • Northam, G. B. and Anderson, G. Y. (1986). Supersonic Combustion Ramjet Research at Langley. In AIAA Paper No. 86–0159.

    Google Scholar 

  • Pratte, B. D. and Baines, W. D. (1967). Profiles of the round turbulent jet in a cross flow In J. Hydronaut. Div. ASCE, 92: 53–64.

    Google Scholar 

  • Ricou, F.P. and Spalding, D.B. (1961). J.Fluid Mech., 11: 21–32.

    Article  MATH  Google Scholar 

  • Rudman, M. (1996). Simulation of the Near Field of a Jet in a Cross Flow. In Experimental Thermal and Fluid Science, 12: 134–141.

    Google Scholar 

  • Salvetti, M. V. (2003). Large Eddy Simulation of Jets: State of the Art and Open Problems. In Manipulation and Control of Transverse Jets,Springer-Wein, New York.

    Google Scholar 

  • Schlichting, H. (1933). In Z. AngewMath. Mech, 13: 260–263.

    Article  MATH  Google Scholar 

  • Smith, S. H. and Mungal, M. G. (1998). Mixing, structure and scaling of the jet in crossflow. In J. Fluid Mech., 357: 83–122.

    Google Scholar 

  • Steward, F. R. (1970). Comb. Sci. and Tech., 2: 203.

    Article  Google Scholar 

  • Wang, K. C., Smith, 0. I., and Karagozian, A. R. (1995). In-Flight Imaging of Transverse Gas Jets Injected into Subsonic and Supersonic Crossflows. In AIAA J., 33 (12): 2259–2263.

    Google Scholar 

  • Yuan, L. L., Street, R. L., and Ferziger, J. H. (1999). Large-eddy simulations of a round jet in crossflow. In J. Fluid Mech., 379: 71–104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Karagozian, A.R. (2003). Background on and Applications of Jets in Crossflow. In: Karagozian, A.R., Cortelezzi, L., Soldati, A. (eds) Manipulation and Control of Jets in Crossflow. International Centre for Mechanical Sciences, vol 439. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2792-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2792-6_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00753-2

  • Online ISBN: 978-3-7091-2792-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics