Background on and Applications of Jets in Crossflow

  • Ann R. Karagozian
Part of the International Centre for Mechanical Sciences book series (CISM, volume 439)


The jet in crossflow or transverse jet has been studied extensively because of its relevance to a wide variety of flows in technological systems, including fuel or dilution air injection in gas turbine engines, thrust vector control for high speed airbreathing and rocket vehicles, and exhaust plumes from power plants. These widespread applications have led over the past 50+ years to experimental, theoretical, and numerical examinations of this fundamental flowfield. This summary provides a background on these studies and applications, setting the stage for the specific topics described later in this text which are relevant to transverse jet modeling, manipulation, and control.


Vortical Structure Horseshoe Vortex Vortex System Scalar Dissipation Rate Flame Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbitt, J. D. III, Segal, C., McDaniel, J. C., Krauss, R. H., and Whitehurst, R. B. (1993). Experimental Supersonic Hydrogen Combustion Employing Staged Injection Behind a Rearward-Facing Step. In J. Propul. Power, 9: 472–478.Google Scholar
  2. Beer, J. and Chigier, N. (1972). Combustion Aerodynamics,Kreiger Publishing Company.Google Scholar
  3. Bowman, C. T. (1992). Control of Combustion-Generated Nitrogen Oxide Emissions: Technology Driven by Regulation. In 24th Symposium (Intl.) on Combustion, pp. 859–878.Google Scholar
  4. Brancher, P., Chomaz, J. M., and Huerre, P. (1994). Direct numerical simulations of round jets: Vortex induction and side jets. In Physics of Fluids, 6 (5), pp. 1768–1774.Google Scholar
  5. Broadwell, J. E. and Breidenthal, R. E. (1984). Structure and mixing of a transverse jet in incompressible flow. In J. Fluid Mech., 148: 405–412.Google Scholar
  6. Brzustowski, T. A. (1977). In Turbulent Combustion: Progress in Astronautics and Aeronautics,58:407–430.Google Scholar
  7. Cortelezzi, L. and Karagozian, A. R. (2001). On the Formation of the Counter-Rotating Vortex Pair in Transverse Jets. In J. Fluid Mech., 446: 347–373.Google Scholar
  8. Cortelezzi, L. and Karagozian, A. R. (2003). Three-dimensional vortex modeling of unforced transverse jets. In Manipulation and Control of Transverse Jets,Springer-Wein, New York.Google Scholar
  9. Curran, E. T. (2002). Scramjet engines: The first forty years. In J. Propul. Power, 17 (6): 1138–1148.Google Scholar
  10. Fearn, R. and Weston, R. (1974). Vorticity associated with a jet in a cross flow. In AIAA J., 12: 1666–1671.Google Scholar
  11. Freund, J.B., Lele, S.K., and Moin, P. (2000). Numerical simulation of a Mach 1.92 turbulent jet and its sound field. In AIAA J., 38 (11), pp. 2023–2031.Google Scholar
  12. Fric, T. F. and Roshko, A. (1994). Vortical structure in the wake of a transverse jet. In J. Fluid Mech., 279: 1–47.Google Scholar
  13. Gortler, H. (1942). In Z. Angew Math. Mech, 22: 244–254.CrossRefMathSciNetGoogle Scholar
  14. Hasselbrink, E. F., Jr. and Mungal, M. G. (2001). Transverse Jets and Jet Flames. Part 2. Velocity and OH Field Imaging. In J. Fluid Mech., 443: 27–68.Google Scholar
  15. Heister, S. D., Nguyen, T. T., and Karagozian, A. R. (1989). Modeling of Liquid Jets Injected Transversely into a Supersonic Crossflow. In AIAA J. 27: 1727–1734.Google Scholar
  16. Heister, S. D. and Karagozian, A. R. (1990a). Vortex Modeling of Gaseous Jets in a Compressible Cross Flow. In J. Prop. Power, 6: 85–92.Google Scholar
  17. Heister, S. D. and Karagozian, A. R. (1990b). Gaseous Jet in Supersonic Crossflow. In AIM J., 28: 819–827.Google Scholar
  18. Hill, P. G. and Peterson, C. R. (1992). Mechanics and Thermodynamics of Propulsion,2nd Ed., Addison-Wesley Publishing Co.Google Scholar
  19. Holdeman, J. D. (1993). Mixing of Multiple Jets with a Confined Subsonic Crossflow. In Prog. Energy Comb. Sci., 19 (1): 31–70.Google Scholar
  20. Huerre, P. and Monkewitz, P. A. (1990). Local and Global Instabilities in Spatially Developing Rows, In Ann. Rev. Fluid Mech., 22: 473–537.Google Scholar
  21. Humble, R. W., Henry, G. N., and Larson, W. J. (1995). Space Propulsion Analysis and Design, Revised edition, Mc-Graw-Hill Publishing Co.Google Scholar
  22. Kailasanath, P., Sreenivasan, K. R., and Saylor, J. R. (1993). Conditional Scalar Dissipation Rates in Turbulent Wakes, Jets, and Boundary Layers. In Phys. Fluids A, 5 (12): 3207–3215.Google Scholar
  23. Kamotani, Y., and Greber, I. (1972) Experiments on a turbulent jet in a cross flow. In AIM J., 10: 14251429.Google Scholar
  24. Karagozian, A. R. (1986a). The flame structure and vorticity generated by a chemically reacting transverse jet. In AIAA J., 24: 1502–1507.Google Scholar
  25. Karagozian, A. R. (1986b). An analytical model for the vorticity associated with a transverse jet. In AIAA J., 24: 429–436.Google Scholar
  26. Karagozian, A. R. and Nguyen, T. T. (1986). Effects of heat release and flame distortion in the transverse fuel jet. In 21st Symp. (Intl.) on Combustion, 1271–1279.Google Scholar
  27. Karagozian, A. R., Nguyen, T. T., and Kim, C. N. (1986). Vortex modeling of single and multiple dilution jet mixing in a crossflow. In J. Propul. Power, 2 (4): 354–360.Google Scholar
  28. Karagozian, A. R., Wang, K. C., Le, A.-T., and Smith, O. I. (1996). Transverse Gas Jet Injection Behind a Rearward-Facing Step In J. Propul. Power, 12: 1129–1136.CrossRefGoogle Scholar
  29. Kelso, R. M. and Smits, A. J. (1995). Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet. In Phys. Fluids, 7: 153–158.Google Scholar
  30. Kelso, R. M., Lim, T T., and Perry, A. E. (1996). An experimental study of round jets in cross-flow. In J. Fluid Mech., 306: 111–144.Google Scholar
  31. Kerrebrock, J. L., (1977). Aircraft Engines and Gas Turbines,The MIT Press.Google Scholar
  32. Krothapalli, A., Lourenco, L., and Buchlin, J. M. (1990). Separated flow upstream of a jet in a crossflow. In AIM J. 28: 414–420.Google Scholar
  33. Liepmann, D. (1991). Streamwise Vorticity and Entrainment in the Near Field of a Round Jet. In Phys. Fluids A, 3 (5): 1179–1185.Google Scholar
  34. Lim, T. T., Kelso, R. M., and Perry, A. E. (1998). A visual study of vortex rings fired transversely into a crossflow. In 3th Australian Fluid Mechanics Conference,Monash University, Melbourne, Australia.Google Scholar
  35. Lim, T.T., New, T.H., and Luo, S.C. (2001). On the development of large-scale structures of a jet normal to a cross flow. In Phys. Fluids, 13 (3): 770–775.Google Scholar
  36. Margason, R. J. (1993). Computational and Experimental Assessment of Jets in Cross Flow. In AGARDCP-534, 1: 1–141.Google Scholar
  37. M’Closkey, R. T., King, J. M., Cortelezzi, L., and Karagozian, A. R. (2002). The actively controlled jet in crossflow. In J. Fluid Mech., Vol. 452, pp. 325–335.Google Scholar
  38. M’Closkey, R. T., King, J. M., Cortelezzi, L., and Karagozian, A. R., (2003). The actively controlled jet in crossflow. In Manipulation and Control of Transverse Jets,Springer-Wein, New York.Google Scholar
  39. McMillin, B. K., Seitzman, J. M., and Hanson, R. K. (1994). Comparison of NO and OH Planar Fluorescence Temperature Measurements in Scramjet Model Flowfields. In AIAA J., 32 (10): 1945–1952.Google Scholar
  40. Mungal, M. G. and Hasselbrink, E. E, Jr. (2003). Jets in Crossflow - Effects of Heat Release. In Manipulation and Control of Transverse Jets,Springer-Wein, New York.Google Scholar
  41. Mungal, M. G. and Smith, S. H. (2003). Jets in Crossflow - Scalar Mixing via PLIF. In Manipulation and Control of Transverse Jets, Springer-Wein, New York.Google Scholar
  42. Nguyen, T. T. and Karagozian, A. R. (1992). A Liquid Fuel Jet in Subsonic Crossflow. In J. Propul. Power, 8: 21–29.Google Scholar
  43. Northam, G. B. and Anderson, G. Y. (1986). Supersonic Combustion Ramjet Research at Langley. In AIAA Paper No. 86–0159.Google Scholar
  44. Pratte, B. D. and Baines, W. D. (1967). Profiles of the round turbulent jet in a cross flow In J. Hydronaut. Div. ASCE, 92: 53–64.Google Scholar
  45. Ricou, F.P. and Spalding, D.B. (1961). J.Fluid Mech., 11: 21–32.CrossRefzbMATHGoogle Scholar
  46. Rudman, M. (1996). Simulation of the Near Field of a Jet in a Cross Flow. In Experimental Thermal and Fluid Science, 12: 134–141.Google Scholar
  47. Salvetti, M. V. (2003). Large Eddy Simulation of Jets: State of the Art and Open Problems. In Manipulation and Control of Transverse Jets,Springer-Wein, New York.Google Scholar
  48. Schlichting, H. (1933). In Z. AngewMath. Mech, 13: 260–263.CrossRefzbMATHGoogle Scholar
  49. Smith, S. H. and Mungal, M. G. (1998). Mixing, structure and scaling of the jet in crossflow. In J. Fluid Mech., 357: 83–122.Google Scholar
  50. Steward, F. R. (1970). Comb. Sci. and Tech., 2: 203.CrossRefGoogle Scholar
  51. Wang, K. C., Smith, 0. I., and Karagozian, A. R. (1995). In-Flight Imaging of Transverse Gas Jets Injected into Subsonic and Supersonic Crossflows. In AIAA J., 33 (12): 2259–2263.Google Scholar
  52. Yuan, L. L., Street, R. L., and Ferziger, J. H. (1999). Large-eddy simulations of a round jet in crossflow. In J. Fluid Mech., 379: 71–104.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Ann R. Karagozian
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations