Advertisement

COC Methods for Additional Geometrical Constraints

  • G. I. N. Rozvany
  • M. Zhou
Part of the International Centre for Mechanical Sciences book series (CISM, volume 325)

Abstract

In the previous chapter, the COC algorithm was applied to elastic systems with a single deflection constraint and was illustrated with examples involving Bernoullibeams of variable width. The aim of this exercise was to show that iterative COC methods not only eliminate but also reverse the existing discrepancy between analysis capability and optimization capability. Since this study was primarily concerned with an optimizer, the repeated analysis of the structures under consideration was carried out by so-called FE-simulators (e.g. BAP) which were shown to generate exactly the same output as standard FE software (e.g. ANSYS), but several orders of magnitude faster. Although FE-simulators can handle only one given set of boundary and loading conditions, they are highly suitable for evaluating the optimization capability in test examples. Whilst present hardware and standard FE software cannot handle such large numbers of elements, the analysis capability of these is expected to keep on increasing in the foreseeable future. The COC algorithm, therefore, represents an optimizer that can easily handle not only present but also future needs in the optimization of large structural systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References — Chapters 1–10

  1. Bendsoe, M.P. 1989: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202.CrossRefGoogle Scholar
  2. Berke, L.; Khot, N.S. 1987: Structural optimization using optimality criteria. In: Mota Soares, C.A. (Ed.) Computer aided optimal design: structural and mechanical systems, pp. 271–312. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  3. Berke, L.; Khot, N.S. 1988: Performance characteristics of optimality criteria methods. In: Rozvany, G.I.N.; Karihaloo, B.L. (Eds.) Structural optimization (Proc. IUTAM Symposium, Melbourne, 1988 ), pp. 39–46. Kluwer, Dordrecht.Google Scholar
  4. Cheng, K.-T.; Olhoff, N. 1981: An investigation concerning optimal design of solid elastic plates. Int. J. Solids Struct. 17, 305–323.CrossRefMATHMathSciNetGoogle Scholar
  5. Foulkes, J. 1954: The minimum-weight design of structural frames. Proc. Royal Soc. 223, No. 1155, 482–494.CrossRefMathSciNetGoogle Scholar
  6. Hemp, W.S. 1973: Optimum Structures. Clarendon, Oxford.Google Scholar
  7. Hegemier, G.A.; Prager, W. 1969: On Michell trusses. Int. J. Mech. Sci. 11, 209–215.CrossRefMATHGoogle Scholar
  8. Heyman, J. 1959: On the absolute minimum weight design of framed structures. Quart. J. Mech. Appl. Math. 12, 3, 314–324.CrossRefMATHMathSciNetGoogle Scholar
  9. Hill, R.H.; Rozvany, G.I.N. 1977: Optimal beam layouts: the free edge paradox. J. Appl. Mech. 44, 696–700.CrossRefGoogle Scholar
  10. Hill, R.H.; Rozvany, G.I.N. 1985: Prager’s layout theory: a nonnumeric computer method for generating optimal structural configurations and weight-influence surfaces. Comp. Meth. Appl. Mech. Engrg. 49, 1, 131–148.CrossRefMATHGoogle Scholar
  11. Kirsch, U. 1989: On the relationship between structural topologies and geometries. Struct. Optim. 2, 39–45.CrossRefGoogle Scholar
  12. Kirsch, U.; Rozvany, G.I.N. 1992: Design considerations in the optimization of structural topologies. In: Rozvany, G.I.N. (Ed.) Proc. NATO/DFG ASI, Optimization of large structural systems (held 23 September - 4 October 1991, Berchtesgaden). Kluwer, Dordrecht.Google Scholar
  13. Kohn, R.V.; Strang, G. 1986: Optimal design and relaxation of variational problems, I, II and III. Comm. Pure Appl. Math. 39, 113–137.CrossRefMATHMathSciNetGoogle Scholar
  14. Kozlowski, W.; Mr6z, Z. 1969: Optimal design of solid plates. Int. J. Solids Struct. 5, 8, 781–794.CrossRefGoogle Scholar
  15. Lagache, J.-M. 1981: Developments in Michell theory. In: Atrek, E.; Gallagher, R.H. (Eds.) Proc. Int. Symp. on Optimum Structural Design (held in Tucson, Oct. 1981), pp. 4.9–4. 16. University of Arizona, Tucson.Google Scholar
  16. Lurie, K.A.; Cherkaev, A.V. 1983: Optimal structural design and relaxed controls. Opt. Control Appl. Meth. 4, 4, 387–392.CrossRefMATHGoogle Scholar
  17. Lurie, K.A.; Cherkaev, A.V. 1984: G-Closure of a set of anisotropically conducting media in the two-dimensional case. J. Optimiz. Theory Appl. 42, 2, 283–304.CrossRefMATHMathSciNetGoogle Scholar
  18. Lurie, K.A.; Cherkaev, A.V. 1984: Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions. Proc. Roy. Soc. Edinburgh 99 A, 71–87.Google Scholar
  19. Lurie, K.A.; Cherkaev, A.V. 1984: G-closure of some particular sets of admissible material characteristics for the problem of bending of thin elastic plates. J. Opt. Theory Appl. 42, 2, 305–316.CrossRefMATHMathSciNetGoogle Scholar
  20. Lurie, K.A.; Cherkaev, A.V.; Fedorov, A.V. 1982: Regularization of optimal design problems for bars and plates. J. Optimiz. Theory Appl. 37, 4, 499–522, 523–543.Google Scholar
  21. Lurie, K.A.; Fedorov, A.V.; Cherkaev, A.V. 1984: On the existence of solutions for some problems of optimal design for bars and plates. J. Optimiz. Therory Appl. 42, 2, 247–281.CrossRefMATHMathSciNetGoogle Scholar
  22. Marcal, P.V.; Prager, W. 1964: A method of optimal plastic design. J. de Mécan. 3, 4, 509–530.Google Scholar
  23. Masur, E.F. 1970: Optimum stiffness and strength of elastic structures. J. Eng. Mech. ASCE 96, EM6, 1093–1106.Google Scholar
  24. Masur, E.F. 1975: Optimality in the presence of discreteness and discontinuity. In: Sawczuk, A.; Mr6z, Z. (Eds.) Optimization in structural design (Proc. IUTAM Symp. held in Warsaw, Aug. 1973), pp. 441–453, Springer-Verlag, Berlin.Google Scholar
  25. Maxwell, J.C. 1872: On reciprocal figures, frames and diagrams of force. Trans. Roy. Soc. Edinburgh 26, 1. Also in: Scientific Papers 2 ENiven, W.D. (Ed.), 1890] University Press, Cambridge, 174–177.Google Scholar
  26. Michell, A.G.M. 1904: The limits of economy of material in frame-structures. Phil. Mag. 8, 47, 589–597.CrossRefMATHGoogle Scholar
  27. Morley, C.T. 1966: The minimum reinforcement of concrete slabs. Int. J. Mech. Sci. 8, 305–319.CrossRefGoogle Scholar
  28. Mr6z, Z. 1963: Limit analysis of plastic structures subject to boundary variations. Arch. Mech. Stott. 15, 1, 63–76.Google Scholar
  29. Murat, F.; Tartar, L. 1985: Calcul des variations et homogénéisation. In: Les méthodes de l’homogénéisation: théorie et applications en physique. Coll. del la Dir. des Etudes et recherches de Elec. de France, Eyrolles, Paris, pp. 319–370.Google Scholar
  30. Nagetegaal, J.C.; Prager, W. 1973: Optimal layout of a truss for alternative loads. Int. J. Mech. Sci 15, 7, 583–592.CrossRefGoogle Scholar
  31. Olhoff, N.; Rozvany, G.I.N. 1982: Optimal grillage layout for given Natural frequency. J. Engrg. Mech. ASCE 108, EM5, 971–975.Google Scholar
  32. Ong. T.G. 1987: Structural optimization via static-kinematic optimality criteria. Ph. D Thesis, Monash Univ., Melbourne, Australia.Google Scholar
  33. Ong T.G.; Rozvany, G.I.N.; Szeto, W.T. 1988: Least weight design for perforated elastic plates for given compliance: non-zero Poisson’s ratio. Comp. Meth. Appl. Mech. Engrg. 66, 301–322.CrossRefMATHGoogle Scholar
  34. Prager, W. 1974: Introduction to structural optimization. (Course held Int. Centre for Mech. Sci. Udine. CSIM 212 ) Springer-Verlag, Vienna.Google Scholar
  35. Prager, W.; Rozvany, G.I.N. 1977: Optimization of structural geometry. In: Bednarek, A.R.; Cesari, L. (Eds.) Dynamical systems. Academic Press, New York.Google Scholar
  36. Prager, W,: Shield, R.T. 1967: A general theory of optimal plastic design. J. Appl. Mech. 34, 1, 184–186.Google Scholar
  37. Prager, W.; Taylor, J. 1968: Problems of optimal structural design. J. Appl. Mech. 35, 102–106.MATHGoogle Scholar
  38. Prager, W.; Rozvany, G.I.N. 1977: Optimal layout of grillages. J. Struct. Mech. 5, 1, 1–18.CrossRefGoogle Scholar
  39. Rozvany, G.I.N. 1974: Analytical treatment of some extended problems in structural optimization, Part II. J. Struct. Mech. 3, 4, 387–402.CrossRefGoogle Scholar
  40. Rozvany, G.I.N. 1976: Optimal design of flexural systems. Pergamon Press, Oxford. Russian translation: Stroiizdat, Moscow, 1980.Google Scholar
  41. Rozvany, G.I.N. 1977: New trends in structural optimization. Proc. 6th Australian Conf. Mech. Struct. Mater. (held in Christchurch, New Zealand ), Univ. Canterbury, pp. 391–398.Google Scholar
  42. Rozvany, G.I.N. 1979: Optimal beam layouts: allowance for cost of shear. Comp. Meth. Appl. Mech. Engrg. 19, 1, 49–58.CrossRefMathSciNetGoogle Scholar
  43. Rozvany, G.I.N. 1981: Variational methods and optimality criteria. In: Haug, E.J.; Cea, J. (Eds.) Optimization of distributed parameter structures (Proc. NATO ASI held in Iowa City), pp. 82–111. Sijthof and Noordhof, Alphen aan der Rijn, The Netherlands.Google Scholar
  44. Rozvany, G.I.N. 1981: Optimal criteria for grids, shells and arches. In: Haug, E.J.; Cea, J. (Eds.) Optimization of distributed parameter structures (Proc. NATO ASI held in Iowa City), pp. 112–151. Sijthof and Noordhof, Alphen aan der Rijn, The Netherlands.Google Scholar
  45. Rozvany, G.I.N. 1984: Structural layout theory: the present state of knowledge. In: Atrek, E.; Gallagher, R.H.; Ragsdell, K.M.; Zienkiewicz, O.C. (Eds.) New directions in optimum structural design, pp. 167–195. Wiley dt Sons, Chichester, England.Google Scholar
  46. Rozvany, G.I.N. 1989: Structural design via optimality criteria (the Prager approach to structural optimization). Kluwer, Dordrecht.CrossRefMATHGoogle Scholar
  47. Rozvany, G.I.N.; Booz, W.; Ong, T.G. 1987: Optimal layout theory: multiconstraint elastic design. In: Teo, K.L.; Paul, H.; Chew, C.L.; Wang, C.M. 1987: Proc. Int. Conf. on Optimization: Techniques and Applications (held in Singapore, April 1987), pp. 138–151. Nat. Univ. Singapore.Google Scholar
  48. Rozvany, G.I.N.; Gollub, W. 1990: Michell layouts for various combinations of line supports, Part I. Int. J. Mech. Sei. 32, 1021–1043.CrossRefMATHGoogle Scholar
  49. Rozvany, G.I.N.; Gollub, W.; Zhou, M. 1989: Optimal design of large discretized systems by iterative otimality criteria methods. In: Topping, B.H.V. (Ed.) Proc. NATO ASI, Optimization and decision support systems in civil engineering (held 25 June - 7 July 1989, Edinburgh). Kluwer, Dordrecht.Google Scholar
  50. Rozvany, G.I.N.; Gollub, W.; Zhou, M. 1989: Layout optimization in structural design. In: Topping, B.H.V. (Ed.) Proc. NATO ASI, Optimization and decision support systems in civil engineering (held 25 June - 7 July 1989, Edinburgh). Kluwer, Dordrecht.Google Scholar
  51. Rozvany, G.I.N.; Gollub, W.; Zhou, M. 1992: Michell layouts for various combinations of line supports, Part II (to be submitted to Int. J. Mech. Sci.).Google Scholar
  52. Rozvany, G.I.N.; Hill, R.H. 1976: General theory of optimal force transmission by flexure. Advances in Appl. Mech. 16, 184–308.Google Scholar
  53. Rozvany, G.I.N.; Hill, R.H. 1978: Optimal plastic design: superposition principles and bounds on the minimum cost. Comp. Meth. Appl. Mech. Engrg. 13, 2, 151–173.CrossRefMATHGoogle Scholar
  54. Rozvany, G.I.N.; Hill, R.H. 1978: A computer algorithm for deriving analytically and plotting optimal structural layout. In: Noor, A.K.; McComb, H.G. (Eds.) Trends in computerized analysis and synthesis (Proc. NASA/ASCE Symp. held in Washington D.C., Oct. 1978), pp. 295–300. Wiley, New York. Aslo: Comp. and Struct. 10, 1, 295–300.Google Scholar
  55. Rozvany, G.I.N.; Nakamura, H.; Kuhnell, B.T. 1980: Optimal archgrids: allowance for self-weight. Comp. Meth. Appl. Mech. Engrg. 24, 3, 287–304.CrossRefMATHGoogle Scholar
  56. Rozvany, G.I.N.; Olhoff, N.; Cheng, K.-T.; Taylor, J.E. 1982: On the solid plate paradox in structural optimization. DCAMM Report 212 June 1981 and J. Struct. Mech. 10, 1, 1–32.CrossRefMathSciNetGoogle Scholar
  57. Rozvany, G.I.N.; Ong, T.G. 1986: A general theory of optimal layouts for elastic structures. J. Engrg. Mech. Div. ASCE 112, 8, 851–857.CrossRefGoogle Scholar
  58. Rozvany, G.I.N.; Ong, T.G. 1986: Optimal plastic design of plates, shells and shellgrids. In: Bevilacqua, L.; Feijôo, R.; Valid, R. (Eds.) Inelastic behaviour of plates and shells (Proc. IUTAM Symp. held in Rio de Janeiro, August 1985 ), p. 357–384, Springer-Verlag, Berlin.Google Scholar
  59. Rozvany, G.I.N.; Ong, T.G. 1986: Update to “Analytical methods in structural optimization”. In: Steele, C.R.; Springer, G.S. (Eds.) Applied Mechanics Update, pp. 289–302, ASME, New York.Google Scholar
  60. Rozvany, G.I.N.; Ong, T.G. 1987: Minimum-weight plate design via Prager’s layout theory (Prager Memorial Lecture). In: Mota Soares (Ed.) Computer aided optimal design: structural and mechanical systems (Proc. NATO ASI held in Troia, Portugal, 1986 ), pp. 165–179, Springer-Verlag, Berlin.Google Scholar
  61. Rozvany, G.I.N.; Ong, T.G.; Olhoff, N.; Bendse, M.P.; Szeto, W.T.; Sandler, R.: Least-weight design of perforated elastic plates I and II. Int. J. Solids Struct. 23, 4, 521–536, 537–550.Google Scholar
  62. Rozvany, G.I.N.; Ong, T.G.; Sandler, R.; Szeto, W.T.; Olhoff, N.; Bendwie, M.P. 1987: Least-weight design of perforated elastic plates I. Int. J. of Solids Struct. 23, 4, 521–536.CrossRefMATHGoogle Scholar
  63. Rozvany, G.I.N.; Ong, T.G.; Sandler, R.; Szeto, W.T.; Olhoff, N.; Bendsoe, M.P. 1987: Least-weight design of perforated elastic plates II. Int. J. of Solids Struct. 23, 4, 537–550.CrossRefMATHGoogle Scholar
  64. Rozvany, G.I.N; Prager, W. 1976: Optimal design of partially discretized grillages. J. Mech. Phys. Solids 24, 2 /3, 125–136.CrossRefGoogle Scholar
  65. Rozvany, G.I.N.; Prager, W. 1979: A new class of structural optimization problems: optimal archgrids. Comp. Meth. Appl. Mech. Engrg. 19, 1, 127–150.CrossRefMATHMathSciNetGoogle Scholar
  66. Rozvany, G.I.N.; Rotthaus, M.; Spengemann, F.; Gollub, W.; Zhou, M. 1990: The Masur paradox. Mech. Struct. Mach. 18, 21–42.CrossRefGoogle Scholar
  67. Rozvany, G.I.N.; Wang, C.M. 1983: Constrained optimal layouts through Prager-Shield criteria. J. Engrg. Mech. Div. ASCE 109, 2, 648–653.CrossRefGoogle Scholar
  68. Rozvany, G.I.N.; Wang, C.M. 1983: On plane Prager-structures (I). Int. J. Mech. Sci. 25, 7, 519–527.CrossRefMATHGoogle Scholar
  69. Rozvany, G.I.N.; Wang, C.M. 1984: Optimal layout theory: allowance for selfweight. J. Engrg. Mech. Div. ASCE 110, EM1, 66–83.Google Scholar
  70. Rozvany, G.I.N.; Wang, C.M.; Dow, M. 1982: Prager structures: archgrids and cable networks of optimal layout. Comp. Meth. Appl. Mech. Engrg. 31, 1, 91–113.CrossRefMATHMathSciNetGoogle Scholar
  71. Rozvany, G.I.N.; Yep, K.M.; Sandler, R. 1984: Optimal design of long-span truss-grids. In: Nooshin, H. (Ed.) Proc. 3rd Int. Conf. on Space Structures (held at the University of Surrey, Guildford, Sept. 1984 ), pp. 689–694, Elsevier Appl. Sci. Publ., London.Google Scholar
  72. Rozvany, G.I.N.; Yep, K.M.; Sandler, R. 1986: Optimal layout of long-span truss-grids I. Int. J. of Solids Struct. 22, 2, 209–223.CrossRefMATHGoogle Scholar
  73. Rozvany, G.I.N.; Zhou, M.; Gollub, W. 1990: Continuum-type optimality criteria methods for large finite element systems with a displacement constraint. Part II. Struct. Optim. 2, 77–104.CrossRefGoogle Scholar
  74. Rozvany, G.I.N.; Zhou, M.; Gollub, W. 1991: Layout optimization in structural design. In: B.H.V. Topping (Ed.) Proc. NATO ASI, Optimization and decision support systems in civil engineering (held 25 June - 7 July 1989, Edinburgh). Kluwer, Dordrecht.Google Scholar
  75. Rozvany, G.I.N.; Zhou, M. 1991: A new direction in cross-section and layout optimization: the COC algorithm. In: Hernandez, S.; Brebbia, C.A. (Eds.) Proc. OPTI 91, Optimization of structural systems and industrial applications. Comp. Mech. Publ., Southampton.Google Scholar
  76. Rozvany, G.I.N.; Zhou, M. 1992: Continuum-based optimality criteria (COC) methods. In: Rozvany, G.I.N. (Ed.) Proc. NATO/DFG ASI, Optimization of large structural systems (held 23 September - 4 October 1991, Berchtesgaden). Kluwer, Dordrecht.Google Scholar
  77. Save, M. 1972: A unified formulation of the theory of optimal design with convex cost function. J. Struct. Mech. 1, 2, 267–276.CrossRefGoogle Scholar
  78. Shield, R.T. 1960: Plate design for minimum weight. Quart. Appl. Math. 18, 2, 131–144.MathSciNetGoogle Scholar
  79. Strang, G.; Kohn, R.V. 1986: Optimal design in elasticity and plasticity. Int. J. Num. Math. Eng. 22, 183–188.CrossRefMATHMathSciNetGoogle Scholar
  80. Spillers, W.R.; Lev. O. 1971: Design for two loading conditions. Int. J. Solids Struct. 7, 1261–1267.CrossRefMATHGoogle Scholar
  81. Wang, C.M. 1987: Optimization of multispan plane Prager-structures with variable support locations. J. Eng. Struct. 9, 157–161.CrossRefGoogle Scholar
  82. Wang, C.M.; Rozvany, G.I.N. 1983: On plane Prager-structures (II) — Non-parallel external loads and allowance for selfweight. Int. J. Mech. Sei. 25, 7, 529–541.Google Scholar
  83. Wang, C.M.; Rozvany, G.I.N.; Olhoff, N. 1984: Optimal plastic design of axesymmetric solid plates with a maximum thickness constraint. Comp. and Struct. 18, 4, 653–665.CrossRefMATHGoogle Scholar
  84. Zhou; M. 1990: Iterative continuum-type optimality criteria methods in structural optimization. Res. Report, Essen University.Google Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • G. I. N. Rozvany
    • 1
  • M. Zhou
    • 1
  1. 1.Essen UniversityEssenGermany

Personalised recommendations