Advertisement

Sensitivity Analysis with BEM

  • E. Schnack
  • G. Iancu
Part of the International Centre for Mechanical Sciences book series (CISM, volume 325)

Abstract

Shape optimization with the Boundary Element Method, see [01,02,04,08,09] has great advantages compared to the Finite Element Method based shape optimization. For linear problems, we have to discretize only the surface of the body. This means that the dimension of the problem is reduced by one and a re-zoning process for the internal nodal points is not necessary. Additionally, we have a higher sensitivity of displacement and stress fields to geometrical disturbances. These advantagas make the BE method more attractive for shape optimization than the FE method, especially when three-dimensional poblems are involved, see [5].

Keywords

Design Variable Boundary Element Boundary Element Method Stress Peak Stress Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Banerjee, P.K., R. Butterfield: Boundary-Element-Methods in Engineering Science. MacGraw Hill Company, London 1981.MATHGoogle Scholar
  2. [2]
    Bausinger, R., G. Kuhn, W. Bauer, G. Seeger, W. Möhrmann: Die Bounda-• ry-Element-Methode, Theorie und industrielle Anwendung. Kontakt Studium, Bd. 227. Ed. J. Bartz. Expert Verlag, Ehningen 1987.Google Scholar
  3. [3]
    Bohnert, K.: 2D-Shape Optimization with BEM. Master Thesis under guidance of W. Möhrmann and E. Schnack, Karlsruhe University, 1989.Google Scholar
  4. [4]
    Butenschön, H.J., W. Möhrmann, W. Bauer: Advanced Stress Analysis by a Commercial BEM-code. In: Industrial Applications of BEM–Developments in BEM, Vol. 5. Ed.: P.K. Banerjee, R.B. Wilson. Elsevier Applied Science, London, New York 1989, 231–261.Google Scholar
  5. [5]
    Chaudouet-Miranda, A., F. El Yafi: 3D Optimum Design Using BEM Technique. Proceedings of BEM IX-Conference, 31 August–4 September 1987, Stuttgart/FRG. In: Boundary Elements IX, Vol. 2: Stress Analysis Applications. Eds. C.A. Brebbia, W.L. Wendland, G. Kuhn. Computational Mechanics Publications, Springer-Verlag, Berlin, Heidelberg, New York 1987, 449–462.Google Scholar
  6. [6]
    Defourny, M.: Optimization Techniques and Boundary Element Method. Proceedings of BEM X-Conference, 6–9 September 1988, Southampton/UK. In: Boundary Elements X. Ed. C.A. Brebbia. Computational Mechanics Publications, Springer-Verlag, Berlin, Heidelberg, New York 1988, pp. 479–490.Google Scholar
  7. [7]
    Miamoto, Y., S. Iwasaki, H. Sugimoto: On Study of Shape Optimization of 2-Dimensional Elastic Bodies by BEM. Proceedings of BEM VIII-Conference, 22–25 September 1986, Tokyo/Japan. In: Boundary Elements VIII. Eds. M. Tanaka, C.A. Brebbia. Computational Mechanics Publications, Springer-Verlag, Berlin, Heidelberg, New York 1986, pp. 403412.Google Scholar
  8. [8]
    Möhrmann, W.: DBETSY–Die Boundary-Element-Methode in der industriellen Berechnung. VDI-Berichte 537 (1984), pp. 627–650.Google Scholar
  9. [9]
    Möhrmann, W., W. Bauer: DBETSY–Industrial Application of the BEM. Proc. of BEM IX-Conference, 31 August–4 September 1987, Stuttgart/ FRG. In: Boundary Elements IX, Vol. 1: Mathematical and Computational Aspects. Eds. C.A. Brebbia, W.L. Wendland, G. Kuhn. Computational Mechanics Publications, Springer-Verlag, Berlin, Heidelberg 1987, pp. 593–607.CrossRefGoogle Scholar
  10. [10]
    Sundgren, E., S.-Y. Wu: Shape Optimization Using BEM with Substructuring. Int. J. Num. Meth. in Engng. 26 (1988), pp. 1913–1924.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • E. Schnack
    • 1
  • G. Iancu
    • 1
  1. 1.Karlsruhe UniversityKarlsruheGermany

Personalised recommendations