Shape Optimal Design of Axisymmetric Shell Structures

  • C. A. Mota Soares
  • J. I. Barbosa
  • C. M. Mota Soares
Part of the International Centre for Mechanical Sciences book series (CISM, volume 325)


Structural optimization using finite element techniques requires the sequential use of structural and sensitivity analyses combined with a numerical optimizer. The success of the structural optimization process depends on the proper choices with respect to the finite element model, sensitivity analysis, objective function, constraints, design variables and method of solution of the nonlinear mathematical problem.


Design Variable Initial Design Gradient Evaluation Cylindrical Tank Fundamental Natural Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbosa, J. I., 1990, “Analytical Sensitivities for Axisymmetric Shells Using Symbolic Manipulator MATHEMATICA”, CEMUL Report, July 1990.Google Scholar
  2. Barthelemy, B., Chon, C. T. and Haftka, R. T., 1988, “Accuracy Problems Associated with Semi-Analytical Derivatives of Static Response”, Journal of Finite Elements in Analysis and Design, Vol. 4, pp. 249–265.CrossRefMATHGoogle Scholar
  3. Chenais, D., 1987, “Shape Optimization in Shell Theory: Design Sensitivity of the Continuous Problem”, Eng. Opt, 11, pp. 289–303.CrossRefGoogle Scholar
  4. Desai, C. S. and Abel, J. F., 1972, Introduction To The Finite Element Method, A Numerical Method For Engineering Analysis. Van Nostrand Reinhold Company, New York.Google Scholar
  5. Gendong, C. and Yingwei, L., 1987, “A New Computation Scheme for Sensitivity Analysis”, Eng. Opt., Vol. 12, pp. 219–234.CrossRefGoogle Scholar
  6. Haftka, R. T. and Kaurat, M. P., 1987, “Finite Elements in Structural Design”, Computer Aided Optimal Design: Structural and Mechanical Systems (Ed. Mota Soares, C. A.), Springer-Verlag, pp. 241–270, Berlin.Google Scholar
  7. Kraus, H., 1967, Thin Elastic Shells, John Wiley & Sons, Inc., New YorkGoogle Scholar
  8. Marcelin, J. L. and Trompette Ph., 1988, “Optimal Shape Design of Thin Axisymmetric Shells”, Eng. Opt., Vol. 13, pp. 108–117.CrossRefGoogle Scholar
  9. Mehrei, S. and Rousselet, B., 1989, “Analysis and Optimization of a Shell of Revolution”, Computer Aided Optimum Design of Structures: Applications. Ed. C. A. Brebbia and S. Hernandez, Computational Mechanics Publications, Springer-Verlag, pp. 123–133.Google Scholar
  10. Plant, R. H., Johnson, L. W. and Parbery, R., 1984, “Optimal Form of Shallow Shells with Circular Boundary”, Transactions of the ASME, Vol. 51, pp. 526–538.CrossRefGoogle Scholar
  11. Thambiratnam, D. P., Thevendran, V. and Lee, S. L., 1989, “Computer Aided Optimum Design of Structures for Vibration Isolation”, Computer Aided Optimum Design of Structures: Recent Advances, (Ed. C. A. Brebbia and S. Hernandez), Computational Mechanics Publications, Springer-Verlag, pp. 49–59. U. K.Google Scholar
  12. Vanderplaats, G. N., 1984, Numerical Optimization Techniques for Engineering Design, McGraw-Hill, New York.MATHGoogle Scholar
  13. Wolfram, S., 1988, MATHEMATICA - A System for Doing Mathematics by Computer, Addison - Wesley Publishing Company, Inc.Google Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • C. A. Mota Soares
    • 1
  • J. I. Barbosa
    • 2
  • C. M. Mota Soares
    • 1
  1. 1.CEMULLisbonPortugal
  2. 2.ENIDHOeirasPortugal

Personalised recommendations