Advertisement

Eurocode ’92 pp 395-403 | Cite as

VLSI Implementation of a Fractal Image Compression Algorithm

  • R. Creutzburg
  • W. Geiselmann
  • F. Heyl
Part of the International Centre for Mechanical Sciences book series (CISM, volume 339)

Abstract

In this paper we describe a VLSI implementation of a lossy image compression [1] algorithm given in [2]. The chip was designed using the full—custom VLSI CAD system ISIS and was performed in the hardware description language HDL of this system on transistor level [3, 4, 5]. The chip area is about 1 mm2 using a 2μ-CMOS technology.

Keywords

Fractal Dimension Boolean Function Clock Cycle Image Compression VLSI Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Storer, J.A.: Data Compression — Methods and Theory. Computer Science Press: 1988.Google Scholar
  2. [2]
    Walach, E.; Karnin, E.: A fractal approach to image compression. Proc. Int. Conference Acoust. Speech Signal Process. ICASSP’86, Tokyo 1986.Google Scholar
  3. [3]
    ISIS Manuals; Racal-Redac Ltd, Tewkesbury, Gloucestershire, England; 1985.Google Scholar
  4. [4]
    Mead, C.; Conway, L.: Introduction to VLSI Systems. Addison Wesley: 1980.Google Scholar
  5. [5]
    Weste, N.; Eshragian, K.: CMOS VLSI Design. Addison Wesley: Reading (MA ) 1985.Google Scholar
  6. [6]
    Creutzburg, R.; Ivanov, E.: Fast algorithm for computing fractal dimensions of image segments. in: Cantoni, V.; S. Levialdi; R. zburg; G. Wolf (Eds.): Recent Issues in Pattern Analysis and Recognition. Lecture ivui.es in Computer Science 399, Springer-Verlag: Berlin-Heidelberg 1989, pp. 42 - 51.CrossRefGoogle Scholar
  7. [7]
    Creutzburg, R.; Mathias, A.; Ivanov, E.: Fast algorithm for computing the fractal dimension of binary images. Physica A 185 (1992), pp. 56 - 60.CrossRefGoogle Scholar
  8. [8]
    Mandelbrot, B. B.: The Fractal Geometry of Nature. Freeman: New York 1988.Google Scholar
  9. [9]
    Quinqueton, J.; Simon, J.C.: On the use of a Peano scanning in image processing. Issues in Digital Image Processing, Sijthoff & Noordhoff 1989, pp. 357 - 365.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • R. Creutzburg
    • 1
  • W. Geiselmann
    • 1
  • F. Heyl
    • 1
  1. 1.University of KarlsruheKarlsruheGermany

Personalised recommendations