Eurocode ’92 pp 353-368 | Cite as

We Can Think of Good Codes, and Even Decode Them

  • G. Battail
Part of the International Centre for Mechanical Sciences book series (CISM, volume 339)


“All codes are good, except those we can think of.” This pessimistic opinion is widely shared among the coding theory community. We shall try instead to defend the optimistic statement of the above title. The word “good” is given in the quoted sentence the restricted meaning: “with a large minimum distance”. From a communication engineering point of view, we were led to criticize this definition and to propose as a better criterion of goodness the proximity of the normalized distance distribution of a code with respect to that which results in the average from random coding, as measured for instance by the cross-entropy of these distributions. Looking for codes which are good in this sense for the Euclidean metric, as relevant to the additive white Gaussian noise channel, we show that combining a maximum distance separable code (e.g., a Reed-Solomon one) with an almost arbitrary one-to-one mapping of its q-ary symbols into a 2-dimensional constellation is a satisfactory solution provided q is large enough.

Near-capacity performance may be expected from such a random-like code, provided it can be decoded with reasonably low complexity. Using the Euclidean metric implies soft-decision decoding. We discuss two decoding algorithms for this purpose. The first one is sequential, as adapted to the finite context of a block code. It is potentially optimum, although practical considerations lead to limit the number of words to be tried. The second one is intrinsically nonoptimum and relies on an interpretation of a linear code as a kind of product of single-check codes which enables their cascaded weighted-output decoding. For large Reed-Solomon codes, none of these algorithms is fully satisfactory, but we suggest to combine them in order to obtain a near-optimum algorithm of acceptable complexity.


Linear Code Distance Distribution Random Code Information Symbol Additive White Gaussian Noise Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.T. COFFEY and R.M. GOODMAN, Any Code of Which we Cannot Think is Good, IEEE Trans. Inf. Th., vol. 36, n° 6, Nov. 1990, pp. 1453–1461CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    C.E. SHANNON, Probability of Error for Optimal Codes in a Gaussian Channel, BSTJ, vol. 38, n° 3, May 1959, pp. 611–656MathSciNetGoogle Scholar
  3. [3]
    P. ELIAS, Error-Free Coding, IRE Trans. Inf. Th., 1954, pp. 29–37Google Scholar
  4. [4]
    G. BATTAIL, Construction explicite de bons codes longs, Annales Télécommunic., vol. 44 n° 7–8, July-Aug. 1989, pp. 392–404MATHGoogle Scholar
  5. [5]
    R.C. SINGLETON, Maximum Distance Q-nary Codes, IEEE Trans. Inf. Th., vol. IT-10 Apr. 1964, pp. 116–118CrossRefMathSciNetGoogle Scholar
  6. [6]
    K.M. CHEUNG, More on the Decoder Error Probability for Reed-Solomon Codes, IEEE Trans. Inf. Th., vol. 35 n° 4, July 1989, pp. 895–900CrossRefMATHGoogle Scholar
  7. [7]
    G. BATTAIL, H. MAGALHÄES de OLIVEIRA and ZHANG W., Coding and Modulation for the Gaussian Channel, in the Absence or in the Presence of Fluctuations, EUROCODE 90, Udine, Italy, 5–9 Nov. 1990; Lecture Notes in Computer Science, Springer Verlag, n° 514, pp. 337–349Google Scholar
  8. [8]
    G.J. CHAITIN, Algorithmic Information Theory, Cambridge Univ. Press, 1987Google Scholar
  9. [9]
    R.M. ROTH and A. LEMPEL, On MDS Codes via Cauchy Matrices, IEEE Trans. Inf. Th., vol. IT-35 n° 6, Nov. 1989, pp. 1314–1319CrossRefMathSciNetGoogle Scholar
  10. [10]
    K.-M. CHEUNG, Identities and approximations for the weight distribution of qary codes, IEEE Trans. on Inf. Th., vol. 36 n° 5, sept. 1990, pp. 1149–1153CrossRefMATHGoogle Scholar
  11. [11]
    L.R. BAHL, J. COCKE, F. JELINEK and J. RAVIV, Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate, IEEE Trans. Inf. Th., vol. IT-20 n° 2, Mar. 1974, pp. 284–287Google Scholar
  12. [12]
    G. BATTAIL and M.C. DECOUVELAERE, Décodage par répliques, Annales Télécommunic., vol. 31 n° 11–12, nov.-déc. 1976, pp. 387–404Google Scholar
  13. [13]
    J.K. WOLF, Efficient Maximum Likelihood Decoding of Linear Block Codes Using a Trellis, IEEE Trans. Inf. Th., vol. IT-24 n° 1, Jan. 1978, pp. 76–80CrossRefGoogle Scholar
  14. [14]
    G. BATTAIL, M. DECOUVELAERE and P. GODLEWSKI, Replication Decoding, IEEE Trans. Inf. Th., vol. IT-25 n° 3, May 1979, pp. 332–345MathSciNetGoogle Scholar
  15. [15]
    G. BATTAIL, Décodage pondéré optimal des codes linéaires en blocs I.- Emploi simplifié du diagramme du treillis, Annales Télécommunic., vol. 38 n° 11–12, Nov.-Dec. 1983, pp. 443–459MATHGoogle Scholar
  16. [16]
    G. BATTAIL and J. FANG, Décodage pondéré optimal des codes linéaires en blocs II. - Analyse et résultats de simulation, Annales Télécommunic., vol. 41 n° 11–12, Nov.-Dec. 1986, pp. 580–604Google Scholar
  17. [17]
    J. FANG, Décodage pondéré des codes en blocs et quelques sujets sur la complexité du décodage, ENST Doctor Thesis, Mar. 18, 1987Google Scholar
  18. [18]
    G. BATTAIL, Description polynomiale des codes en blocs linéaires, Annales Télécommunic., vol. 38 n° 1–2, Jan.-Feb. 1983, pp. 3–15MATHGoogle Scholar
  19. [19]
    G. BATTAIL, Le décodage pondéré en tant que procédé de réévaluation d’une distribution de probabilité, Annales Télécommunic., vol. 42 n° 9–10, Sept.-Oct. 1987, pp. 499–509Google Scholar
  20. [20]
    G. BATTAIL, Décodage par résolution d’un système d’équations implicites analogiques, Annales Télécommunic., vol. 45 n° 7–8, July-Aug. 1990, pp. 393–409Google Scholar
  21. [21]
    R.E. BLAHUT, A Universal Reed-Solomon Decoder, IBM J. Res. & Dev., vol. 28 n° 2, Mar. 1984, pp. 150–158Google Scholar
  22. [22]
    G. BATTAIL and P. GODLEWSKI, Emploi de représentations polynomiales à plusieurs indéterminées pour le décodage des codes redondants linéaires, Annales Télécommunic., vol. 33, n° 3–4, Mar.-Apr. 1978, pp. 74–86MATHGoogle Scholar
  23. [23]
    P. DELSARTE and P. PIRET, Algebraic Constructions of Shannon Codes for Regular Channels, IEEE Trans. Inf. Th., vol. IT-28 n° 4, July 1982, pp. 593–599CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • G. Battail
    • 1
  1. 1.Ecole Nationale Supérieure des TélécommunicationsParisFrance

Personalised recommendations