Eurocode ’92 pp 207-215 | Cite as

Pseudoprimes: A Survey of Recent Results

  • F. Morain
Part of the International Centre for Mechanical Sciences book series (CISM, volume 339)


Public key cryptosystems require the use of large prime numbers, numbers with at least 256 bits (80 decimal digits), see for example [12]. One needs to generate these numbers as fast as possible. One way of dealing with this problem is the use of special primes built up using the converse of Fermat’s theorem [35, 14, 17, 29]. Another is to use sophisticated primality proving algorithms, that are fast but need a. careful implementation [13, 9].


Elliptic Curf Galois Group Splitting Field Decimal Digit Linear Recurrence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. ADAMS. Splitting of quartic polynomials. Math. Comp. 43,167 (July 1984), 329343.Google Scholar
  2. [2]
    W. ADAMS. Characterizing pseudoprimes for third order linear recurrences. Math. Comp. 48, 177 (Jan. 1987), 1–15.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    W. ADAMS AND D. SHANKS. Strong primality tests that are not sufficient. Math. Comp. 39, 159 (July 1982), 255–300.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    W. R. ALFORD, A. GRANVILLE, AND C. POMERANCE. There are infinitely many Carmichael numbers. Preprint, July 13th 1992.Google Scholar
  5. [5]
    F. ARNAULT. Le test de primauté de Rabin—Miller: un nombre composé qui le “passe”. Report 61, Université de Poitiers — Département (le Mathématiques, Nov. 1991.Google Scholar
  6. [6]
    F. ARNAULT. Carmichaels fortement pseudo-premiers. Manuscript, 1992.Google Scholar
  7. [7]
    S. ARNO. A note ou Perrin pseudoprimes. Math. Comp. 56, 193 (Jan. 1991), 371–376.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    A. O. L. ATKIN. Probabilistic primality testing. In Analysis of Algorithms Seminar I (1992), P. Flajolet and P. Zimmermann, Eds., INRIA Research Report XXX. Summary by F. Morain.Google Scholar
  9. [9]
    A. O. L. ATKIN AND F. MORAIN. Elliptic curves and primality proving. Research Report 1256, INR.IA, Juin 1990. Submitted to Math. Comp.Google Scholar
  10. [10]
    R. SAILLIE AND S. S. WAGSTAFF, JR. Lucas pseudoprimes. Math. Comp. 35, 152 (Oct. 1980), 1391–1417.CrossRefMathSciNetGoogle Scholar
  11. [11]
    R. BALASUBRAMANIAN AND M. R. MURTY. Elliptic pseudoprimes, II: Submitted for publication.Google Scholar
  12. [12]
    G. BRASSARD. Modern Cryptology, vol. 325 of Lect. Notes in Computer Science. Springer- Verlagq 1988.Google Scholar
  13. [13]
    H. COHEN AND A. K. LENSTRA. Implementation of a new primality test. Math. Comp. 48, 177 (1987), 103–121.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    C. COUVREUR AND J. QUISQUATER. An introduction to fast generation of large prime numbers. Philips J. Research 37 (1982), 231–264.MathSciNetGoogle Scholar
  15. [15]
    I. DAMGÂRD AND P. LANDROCK. Improved bounds for the Rabin primality test. In Proc. 3rd IMA conference on Coding and Cryptography (1991), M. Ganley, Ed., Oxford University Press.Google Scholar
  16. [16]
    J. H. DAVENPORT. Primality testing revisited. In ISSAC’92 (New York, 1992), P. S. Wang, Ed., ACM Press, pp. 123–129. Proceedings, July 27–29, Berkeley.Google Scholar
  17. [17]
    D. GORDON. Strong primes are easy to find. In Advances in Cryptology (1985), T. Beth, N. Cot, and I. Ingemarsson, Eds., vol. 209 of Lect. Notes in Computer Science, Springer-Verlag, pp. 216–223. Proceedings Eurocrypt ‘84, Paris ( France ), April 9–11, 1984.Google Scholar
  18. [18]
    D. M. GORDON. On the number of elliptic pseudoprimes. Math. Comp. 52, 185 (Jan. 1989), 231–245.CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    D. M. GORDON AND C. POMERANCE. The distribution of Lucas and elliptic pseudo-primes. Math. Comp. 57, 196 (Oct. 1991), 825–838.CrossRefMATHMathSciNetGoogle Scholar
  20. [20]
    D. GUILLAUME AND F. MORAIN. Building Carmichael numbers with a large number of prime factors and generalization to other numbers. Research Report 1741, INRIA, Aug. 1992.Google Scholar
  21. [21]
    S. GuRAK. Pseudoprimes for higher-order linear recurrence sequences. Math. Comp. 55, 192 (Oct. 1990), 783–813.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    G. H. HARDY AND E. M. WRIGHT. An introduction to the theory of numbers, 5th ed. Clarendon Press, Oxford, 1985.Google Scholar
  23. [23]
    D. HUSEMÖLLER. Elliptic curves, vol. 111 of Graduate Texts in Mathematics. Springer, 1987.Google Scholar
  24. [24]
    G. JAESCHKE. The Carmichael numbers to 1012. Math. Comp. 55, 191 (July 1990), 383–389.MATHMathSciNetGoogle Scholar
  25. [25]
    W. KELLER. The Carmichael numbers to 1013. AMS Abstracts 9 (1988), 328–329. Abstract 88T-11–150.Google Scholar
  26. [26]
    G. C. KURTZ, D. SHANKS, AND H. C. WILLIAMS. Fast primality tests for numbers less than 50. 109. Math. Comp. 0, 174 (Apr. 1986), 691–701.MathSciNetGoogle Scholar
  27. [27]
    G. LÖH. Carmichael numbers with a large number of prime factors. AMS Abstracts 9 (1988), 329. Abstract 88T-11–151Google Scholar
  28. [28]
    G. LÖH AND W. NIEBUHR. Carmichael numbers with a large number of prime factors, II. AMS Abstracts 10 (1989), 305. Abstract 89T-11–131Google Scholar
  29. [29]
    U. M. MAURER. Fast generation of secure RSA-products with almost maximal diversity. In Advances in Cryptology (1990), J.-J. Quisquater, Ed., vol. 434 of Lect. Notes in Computer Science, Springer-Verlag, pp. 636–647. Proc. Eurocrypt ‘89, Houthalen, April 10–13.Google Scholar
  30. [30]
    R. MESHULAM. An uncertainty inequality and zero subsums. Discrete Mathematics 8.4 (1990), 197–200.Google Scholar
  31. [31]
    I. MIYAMOTO AND M. R. MURTY. Elliptic psendoprimes. Math. Comp. 53, 187 (July 1989), 415–430.CrossRefMathSciNetGoogle Scholar
  32. [32]
    L. MONIER. Evaluation and comparison of two efficient probabilistic primality testing algorithms. Theoretical Computer Science 12 (1980), 97–108.CrossRefMATHMathSciNetGoogle Scholar
  33. [33]
    R. PINCH. The Carmichael numbers to 1016. In preparation, 1992.Google Scholar
  34. [34]
    R. PINCH. The pseudoprimes up to 1012. In preparation, Sept. 1992.Google Scholar
  35. [35]
    D. A. PLAISTED. Fast verification, testing and generation of large primes. Theoretical Computer Science 9 (1979), 1–16.CrossRefMATHMathSciNetGoogle Scholar
  36. C. POMERANCE. Carmichael numbers. To appear in Nieuw Arch. Wisk., 1992.Google Scholar
  37. [37]
    C. POMERANCE, J. L. SELFRIDGE, AND S. S. WAGSTAFF, JR. The pseudoprimes to 25.10. Math. Covrip. 35, 151 (1980), 1003–1026.MATHMathSciNetGoogle Scholar
  38. [38]
    M. O. R.ABIN. Probabilistic algorithms in finite fields. SIAM J. Comput. 9, 2 (1980), 273–280.CrossRefMathSciNetGoogle Scholar
  39. [39]
    P. R.IBENBOIM. The book of prime number accords, 2nd ed: Springer, 1989.Google Scholar
  40. [40]
    R. SCHROEPPEL. Richard Pinch’s list of pseudoprimes. E-mail to the NMBRTHRY list, June 1992.Google Scholar
  41. [41]
    P. VAN EMDE BOAS. A combinatorial problem on finite abelian groups, II. Tech. Rep. ZW-007, Math. Centrum Amsterdam Afd. Zuivere Wisk., 1969. 60 pp.Google Scholar
  42. [42]
    P. VAN EMDE BOAS AND D. Kau swiiK. A combinatorial problem on finite abelian groups, III. Tech. Rep. ZW-008, Math. Centrum Amsterdam Afd. Zuivere Wisk., 1969.Google Scholar
  43. [43]
    M. ZIIANG. Searching for large Carmichael numbers. To appear in Sichuan Daxue Xuebao, Dec. 1991.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • F. Morain
    • 1
    • 2
  1. 1.Ecole PolytechniquePalaiseauFrance
  2. 2.French Department of DefenseDélégation Générale pour l’ArmementFrance

Personalised recommendations