Advertisement

Non-Steady State Rolling Contact and Corrugations

  • K. Knothe
Part of the International Centre for Mechanical Sciences book series (CISM, volume 411)

Abstract

Phenomenology and classification of rail corrugation. Field observations. Metallographic investigations. General model of short pitch corrugation formation. Feedback loop between transient dynamics and long-term wear. Similar phenomena on wheel surfaces (out-of-round wheels).

Keywords

Vehicle Speed Contact Mechanic White Layer Contact Patch Rail Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann, G., Fecht, H., and Liebelt, S. (1996a). Formation of white etching layers on the rail treads. Wear 191: 133–140.CrossRefGoogle Scholar
  2. Baumann, G., Grohmann, H.-D., and Knothe, K. (1996b). Wirkungsketten bei der Ausbildung kurzwelliger Riffeln auf Schienenlauffiächen. ETR 45 (12): 792–798.Google Scholar
  3. Baumann, G. (1998). Untersuchungen zu Gefv,gestrukturen und Eigenschaften der “Weißen Schichten” auf verriffelten Schienenlaufflächen. Dissertation, TU Berlin.Google Scholar
  4. Bhaskar, A., Johnson, K., Wood, G., and Woodhouse, J. (1997a). Wheel-rail dynamics with closely conformal contact. Part 1: Dynamic modelling and stability analysis. Proc. Instn. Mech. Engrs. 211 (F): 11–26.Google Scholar
  5. Bhaskar, A., Johnson, K., and Woodhouse, J. (1997b). Wheel-rail dynamics with closely conformal contact. Part 2: Forced response, results and conclusions. Proc. Instn. Mech. Engrs. 211 (F): 27–40.Google Scholar
  6. Böhmer, A., Klimpel, T., and Knothe, K. (2000). Dynamik und Festigkeit von gummiringgefederten Radreifen. ZEV+DET Glasers Annalen 124: (accepted for publication).Google Scholar
  7. Clark, R., Scott, G., and Poole, W. (1988). Short wave corrugations—An explanation based on stick-slip vibrations. In Applied Mechanics Rail Transportation Symposium, AMD Vol. 96, RTD Vol. 2,141–148. ASME.Google Scholar
  8. Engl, A., Meinke, P., and Stöckel, H. (1983). Corrugations on bearers as effects of short time dynamics investigated in the long term process. In Knothe, K., and Gasch, R., eds., Rail Corrugations. Papers presented at the Symposium on Rail Corrugation Problems held at Berlin in June 1983, ILR-Bericht, Nr. 56, 41–70. Berlin: TU Berlin, Institut für Luft-und Raumfahrt.Google Scholar
  9. Frederick, C. O., and Bugden, W. G. (1983). Corrugation research on British Rail. In Knothe, K., and Gasch, R., eds., Rail Corrugations. Papers presented at the Symposium on Rail Corrugation Problems held at Berlin in June 1983, ILR-Bericht, Nr. 56, 7–33. Berlin: TU Berlin, Institut für Luft-und Raumfahrt.Google Scholar
  10. Frederick, C. O., and Sinclair, J. C. (1992). A rail corrugation theory which allows for contact patch size. In Knothe, K., ed., Rail Corrugations. Papers presented at the Symposium on Rail Corrugation Problems held at Berlin on April 17, 1991, ILR-Bericht Nr. 59, 1–27. Berlin: TU Berlin.Google Scholar
  11. Frederick, C. (1987). A rail corrugation theory. In Proc. of the Second International Symposium on Contact Mechanics and Wear of Rail/Wheel Systems held at Kingston/RI, July 1986, 181–211. Waterloo/Ontario: University of Waterloo Press.Google Scholar
  12. Gasch, R., and Knothe, K. (1989). Strukturdynamik, Band 2. Kontinua und ihre Diskretisierung. Berlin e.a.: Springer.MATHGoogle Scholar
  13. Gasch, R., Groß-Thebing, A., Knothe, K., and Valdivia, A. (1983). Linear, self-excitetd vibrations as initiating mechanism of corrugations. In Knothe, K., and Gasch, R., eds., Rail Corrugations. Papers presented at the Symposium on Rail Corrugation Problems held at Berlin in June 1983, ILR-Bericht, Nr. 56, 207–230. Berlin: TU Berlin, Institut für Luft-und Raumfahrt.Google Scholar
  14. Grassie, S., and Kalousek, J. (1993). Rail corrugations. Characteristics, causes, and treatments. Journal of Rail and Rapid Transit, Proc. Instn. Mech. Engrs., part F 207: 57–68.Google Scholar
  15. Grassie, S., Gregory, R., Harrison, D., and Johnson, K. (1982). The dynamic response of railway track to high frequency vertical excitation. J. Mech. Engng. Sci. 24 (2): 77–90.CrossRefGoogle Scholar
  16. Groß-Thebing, A. (1993). Lineare Modellierung des instationären Rollkontaktes von Rad und Schiene. In VDI Fortschritt-Berichte (zugleich Dissertation TU Berlin), Reihe 12, Nr. 199. Dusseldorf: VDI-Verlag.Google Scholar
  17. Hempelmann, K., and Knothe, K. (1989). Eigenschwingungsberechnungen von Eisenbahnradsätzen mit optimalen Ansatzfunktionen. In VDI Fortschritt-Berichte, Reihe 11, Nr. 114. Düsseldorf: VDI-Verlag.Google Scholar
  18. Hempelmann, K., Hiss, F., Knothe, K., and Ripke, B. (1991). The formation of wear patterns on rail tread. Wear 144: 179–195.CrossRefGoogle Scholar
  19. Hempelmann, K. (1994). Short pitch corrugation on railway rails - A linear model for prediction. In VDI Fortschritt-Berichte (zugleich Dissertation TU Berlin), Reihe 12, Nr. 231. Düsseldorf: VDI-Verlag.Google Scholar
  20. Igeland, A., and Ilias, H. (1996). Rail head wear calculations based on high frequency wheelset/track interaction–a comparison between different models. In Zobory, I., ed., Proc. of the 2nd Mini Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Budapest, 29–31 July 1996, volume, 304–314.Google Scholar
  21. Igeland, A., and Ilias, H. (1997). Rail head corrugation growth predictions based on non-linear high frequency vehicle/track interaction. WEAR 213: 90–97.CrossRefGoogle Scholar
  22. Ilias, H., and Knothe, K. (1992). Ein diskret-kontinuierliches Gleismodell unter dem Einfluß schnell bewegter, harmonisch schwankender Wanderlasten. In Fortschritt-Berichte VDI, Reihe 12, Nr. 177. Düsseldorf: VDI-Verlag.Google Scholar
  23. Ilias, H. (1996). Nichtlinear Wechselwirkungen von Radsatz und Gleis beim Überrollen von Profilstörungen. In VDI Fortschritt-Berichte (zugleich Dissertation TU Berlin), Reihe 12, Nr. 297. Düsseldorf: VDI-Verlag.Google Scholar
  24. Ilias, H. (1998/99). The influence of railpad stiffness on wheelset/track interaction and corrugation growth. Accepted for publication in Journal of Sound and Vibration.Google Scholar
  25. Jezequel, L. (1981). Response of periodic systems to a moving load. J. Appl. Mech. 48: 613–618.ADSCrossRefMATHGoogle Scholar
  26. Knothe, K., and Grassie, S. (1993). Modelling of railway track and vehicle/track interaction at high frequencies. Vehicle System Dynamics 22 (3–4): 209–262.CrossRefGoogle Scholar
  27. Knothe, K., and Liebelt, S. (1995). Determination of temperatures for sliding contact with application for wheel-rail systems. Wear 189: 91–99.CrossRefGoogle Scholar
  28. Knothe, K., Willner,F., and Strzyzakowski, Z. (1994) Rail vibrations in the high frequency range. J. Sound Vibr., 169 (1): 111–123, 1994.ADSCrossRefGoogle Scholar
  29. Knothe, K., and Theiler, A. (1997). Normal and tangential contact problem with rough surfaces. In Zobory, I., ed., Proc. of the 2nd Mini Conference on Contact Mechanics and Wear of Rail/Wheel Systems held at Budapest in August 1996, 34–43. Budapest: Technical University of Budapest.Google Scholar
  30. Knothe, K., Yu, M., and Ilias, H. (1997). Studie zu Eigenschaften von Zwischenlagen. Studie im Auftrag der DB AG, Institut für Luft-und Raumfahrt, TU Berlin.Google Scholar
  31. Knothe, K. (1998). Modulare Behandlung des Rollkontakts von Rad und Schiene. In Böhm, F. und Knothe, K. (Hrsg.), Hochfrequenter Rollkontakt der Fahrzeugräder. WILEY-VCH. 39–57.Google Scholar
  32. Knothe, K. (1999). Gleisdynamik und Wechselwirkung zwischen Fahrzeug und Fahrweg. ZAMM 79 (11): 723–737.CrossRefMATHGoogle Scholar
  33. Koch, H. W. (1932). Messungen von Schwingungen am Eisenbahnoberbau. Organ für die Fortschritte des Eisenbahnwesens 87 (21): 389–399.Google Scholar
  34. Kose, K. (1998). Berechnung der Eigenschwingungen und Rezeptanzen von Eisenbahnradsätzen. In Fortschritt-Berichte VDI, Reihe 12, Nr. 347 (zugleich Dissertation TU Berlin). VDI-Verlag Düsseldorf.Google Scholar
  35. Krause, H., and Poll, G. (1986). Wear of wheel-rail surfaces. Wear 113 (1): 103–122.CrossRefGoogle Scholar
  36. Lang, W., and Roth, G. (1993). Optimale Kraftschlußausnutzung bei Hochleistungs- Schienenfahrzeugen. ETR 42: 61–66.Google Scholar
  37. Mauer, L. (1988). Die modulare Beschreibung des Rad/Schiene-Kontaktes im linearen Mehrkörperforrnalismus. Dissertation, TU Berlin.Google Scholar
  38. McDowell, D. (1995). Stress dependence of cyclic ratchetting behaviour of two rail steels. International Journal of Plasticity 11: 397–421.CrossRefGoogle Scholar
  39. Meinke, P., and Morys, B. (1998). Entstehung und Verstärkung von Radunrundheiten bei hohen Fahrgeschwindigkeiten. In Tagungsband zur Bahn-Bau ‘88, Verband Deutscher Eisenbahn-Ingenieure, 28.-30.10.98, 110-126.Google Scholar
  40. Meinke, P., and Szolc, T. (1995). On dynamics of rotating wheel-set/rail systems in medium frequency range. In Bogacz, R., and Popp, K., eds., Dynamical Problems in Mechanical Systems. Proceedings of the 4th German -Polish Workshop, August 1995, Berlin. Warszawa: Polska Akademia Nauk.Google Scholar
  41. Mombrei, W. and Rode, W. (1998). Kenntnisse zu aktuellen Problemen am Eisenbahnrad. Eisenbahningenieur 49: 50–53.Google Scholar
  42. Morys, B., and Kuntze, H. (1997). Simulation analysis and active compensation of the out-of-round phenomena at wheels of high speed trains. In Proceedings of the World Congress of Railway Research held at Florence/Italy, 16–19 November, volume D, 95–105.Google Scholar
  43. Morys, G. (1998). Zur Entstehung und Verstärkung von Unrundheiten an Eisenbahnrädern bei hohen Geschwindigkeiten. Ph.D. Dissertation, Universität Karlsruhe.Google Scholar
  44. Müller, S., and Knothe, K. (1997). Stability of wheelset-track dynamics for high frequencies. Archive of Applied Mechanics 67: 353–363.ADSCrossRefMATHGoogle Scholar
  45. Müller, S. (1998). Linearized Wheel-Rail Dynamics - Stability and Corrugation. In Fortschritt-Berichte VDI (also Dissertation TU Berlin), Reihe 12, Nr. 368. Düsseldorf: VDI- Verlag.Google Scholar
  46. Remington, P. (1976). Wheel-rail-noise, part I-IV. J. Sound Vibr. 46 (3): 359–451.ADSCrossRefGoogle Scholar
  47. Ripke, B., and Knothe, K. (1991). Die unendlich lange Schiene auf diskreten Schwellen bei harmonischer Einzellasterregung. In VDI Fortschritt-Berichte, Reihe 11, Nr. 155. Düsseldorf: VDI-Verlag.Google Scholar
  48. Ripke, B. (1992). Anpassung der Modellparameter eines Gleismodells an gemessene Gleisrezeptanzen. ILR-Mitt. 274, Institut für Luft-und Raumfahrt, TU Berlin.Google Scholar
  49. Ripke, B. (1995). Hochfrequente Gleismodellierung und Simulation der Fahrzeug-GleisDynamik unter Verwendung einer nichtlinearen Kontaktmechanik. In VDI-FortschrittBerichte (zugleich Dissertation TU Berlin), Reihe 12, Nr. 249. Düsseldorf: VDI-Verlag.Google Scholar
  50. Scholl, W. (1987). Darstellungen des Körperschalls in Platten durch Übertragungsmatrizen und Anwendung auf die Berechnung der Schwingungsformen von Eisenbahnschienen. In VDI-Fortschritt-Berichte (zugleich Dissertation TU Berlin), Reihe 11, Nr. 93. Düsseldorf: VDI-Verlag.Google Scholar
  51. Schweleler, J. (1882). Discussion on iron permanent way. In: Ch. Wood. Iron permanent way. Minutes of Proc. of the Instn. of Civ. Engnrs., London 67: 95–118.Google Scholar
  52. Tassilly, E., and Vincent, N. (1991). A linear model for the corrugation of rails. J. Sound Vibr. 150: 25–45.ADSCrossRefGoogle Scholar
  53. Umlauf, V. (1994). Simulation hochfrequenter Schienendynamik unter Verwendung eines FEUbertragungsrmatrizenverfahrens. Diplomarbeit, Technische Universität Berlin.Google Scholar
  54. Valdivia, A. (1987). Die Wechselwirkung zwischen hochfrequenter Rad-Schiene-Dynamik und ungleichförmigem Verschleiß - ein lineares Modell (englischer Titel: The interaction between high-frequency wheel-rail dynamics and irregular rail wear - a linear model. In Fortschrittberichte VDI, Reihe 12, Nr. 93 (zugleich Dissertation TU Berlin. Düsseldorf: VDI-Verlag.Google Scholar
  55. Valdivia, A. (1988). Die Wechselwirkung zwischen hochfrequenter Rad-Schiene-Dynamik und ungleichförmigem Schienenverschleiß. Ein lineares Modell. In VDI Fortschritt-Berichte (zugleich Dissertation TU Berlin, Reihe 12, Nr. 93. Düsseldorf: VDI-Verlag.Google Scholar
  56. Wickens, A. (1965). The dynamics of railway vehicles on straight track: fundamental consideration of lateral stability. Proc. I. Mech. Engrs. 180 (3F): 1–16.Google Scholar
  57. Widmayer, H. (1983). Measurement on the corrugation trial track of DB. In Knothe, K., and Gasch, R., eds., Rail Corrugations. Papers presented at the Symposium on Rail Corrugation Problems held at Berlin in June 1983, ILR-Bericht, Nr. 56, 35–38. Berlin: TU Berlin, Institut für Luft-und Raumfahrt.Google Scholar
  58. Wu, Y. (1997). Einfache Gleismodelle zur Simulation der mittel-und hochfrequenten Fahrzeug/Fahrweg—Dynamik. In Fortschritt-Berichte VDI (zugleich Dissertation TU Berlin), Reihe 12, Nr. 325. Düsseldorf: VDI—Verlag.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • K. Knothe
    • 1
  1. 1.Technical University of BerlinBerlinGermany

Personalised recommendations