Advertisement

Rolling Contact Phenomena

Linear Elasticity
  • J. J. Kalker
Part of the International Centre for Mechanical Sciences book series (CISM, volume 411)

Abstract

In this paper, we treat the rolling contact phenomena of linear elasticity, with special emphasis on the elastic half-space.

Section 1 treats the basics; rolling is defined, the distance between the deformable bodies is calculated, the slip velocity between the bodies is defined and calculated; a very brief recapitulation of the theory of elasticity follows, and the boundary conditions are formulated.

Section 2 treats the half-space approximation. The formulae of Boussinesq-Cerruti are given, and the concept of quasiidentity is introduced. Then follows a brief description of the linear theory of rolling contact for Hertzian contacts, with numerical results, and of the theory of Vermeulen-Johnson for steady-state rolling. Finally, some examples are given.

Section 3 is devoted to the simplified theory of rolling contact.

In Section 4, the variational, or weak theory of contact is considered. First, we set up the virtual work inequality, and it is shown that it is implied by the boundary conditions of contact. Then the complementary virtual work inequality is postulated, and it is shown that it implies the boundary conditions of contact. Elasticity is introduced into both inequalities, and the potential energy and the complementary energy follow. Finally, surface mechanical principles are derived.

In Section 5, we return to the exact half-space theory. The problem is discretized, and solved by means of the CONTACT algorithm. Finally, results are shown in Section 6.

Keywords

Pure Spin Rolling Contact Contact Patch Rolling Velocity Tangential Traction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References of Section 1

  1. [1]
    J.F. ARCHARD (1957), Elastic deformation and the laws of friction. Proceedings of the Royal Society of London, Ser. A 243 p. 190–205.ADSCrossRefGoogle Scholar
  2. [2]
    C.A. COULOMB (1785), Théorie des machines simples. Mémoire de Mathématique et de Physique de l’Académie Royale, p. 161–342.Google Scholar
  3. [3]
    F.W. CARTER (1926), On the Action of a Locomotive Driving Wheel. Proceedings of the Royal Society of London A 112 p. 151–157.ADSCrossRefGoogle Scholar
  4. [4]
    C. CATTANEO (1938), Sul contatto di due corpi elastici: distribuzione locale degli sforzi. Accademia Nazionale Lincei Rendiconti Ser 6 XXVII p. 342–348, 434–436, 474–478.Google Scholar
  5. [5]
    H. FROMM (1927), Berechnung des Schlupfes beim Rollen deformierbaren Scheiben. Zeitschrift für angewandte Mathematik und Mechanik 7 p. 27–58.Google Scholar
  6. [6]
    R.D. MINDLIN (1949), Compliance of elastic bodies in contact. Journal of Applied Mechanics 16, p. 353–383.Google Scholar
  7. [7]
    E. RABINOwICZ, Friction and Wear of Materials. John Wiley and Sons, New York.Google Scholar

References of Section 2

  1. [1]
    J. BOUSSINESQ (1885), Application des potentiels à l’équilibre et du mouvement des solides élastiques. Paris, Gauthier-Villars.Google Scholar
  2. [2]
    V. CERRUTI (1882), Accademia dei Lincei, Roma. Mem. fis. mat.Google Scholar
  3. [3]
    G.M.L. GLADWELL (1980), Contact problems in the classical theory of elasticity. Sijthoff and Noordhoff, Alphen a/d Rijn, the Netherlands.MATHGoogle Scholar
  4. [4]
    E. JAHNKE, F. EMDE (1943), Tables of functions. Dover publications, New York.Google Scholar
  5. [5]
    K.L. JOHNSON (1959), The influence of elastic deformation upon the motion of a ball rolling between two surfaces. Proceedings of the Institution of Mechanical Engineers 173, p. 795–810.Google Scholar
  6. [6]
    A.E.H. LOVE (1926), A treatise on the theory of elasticity. 4th Ed. Cambridge University Press.Google Scholar
  7. [7]
    J.T. ODEN, E.B. PIRES (1983), Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity. Journal of Applied Mechanics 50, p. 67–76.Google Scholar
  8. [8]
    P.J. VERMEULEN, K.L. JOHNSON (1964), Contact of nonspherical bodies transmitting tangential forces. Journal of Applied Mechanics 31, p. 338–340.Google Scholar
  9. [9]
    H. HERTZ (1882A), Über die Berührung fester elastischer Körper. In: H. Hertz, Gesammelte Werke, Band 1. Leipzig: J.A. Barth, (1895), p. 155–173.Google Scholar
  10. [10]
    H. HERTZ (1882B), Über die Berührung fester elastischer Körper und über die Härte. In: H. Hertz, Gesammelte Werke, Band 1. Leipzig: J.A. Barth, (1895), p. 174–196.Google Scholar

References of Section 3

  1. [1]
    J.J. KALKER (1990), Three-dimensional elastic bodies in rolling contact. Kluwer, Dordrecht.CrossRefMATHGoogle Scholar
  2. [2]
    J.J. KALKER, J. PIOTROWSKI (1989), Some new results in rolling contact. Vehicle System Dynamics 18, p. 223–242.Google Scholar

References of Section 4

  1. [1]
    G. DUVAUT, J.-L. LIONS (1972), Les inéquations en mécanique et en physique. Paris, Dunod.MATHGoogle Scholar
  2. [2]
    G. FICHERA (1964), Problemi elastostatici con vincoli unilaterale: il probleme di Signorini con ambigue condizioni al contorno. Memorie Accademie Nazionale dei Lincei Ser. 8, 7, p. 91–140.Google Scholar
  3. [3]
    J.J. KALKER (1970), Transient phenomena in two elastic cylinders rolling over each other with dry friction. Journal of Applied Mechanics 37, p. 677–688.Google Scholar
  4. [4]
    J.J. KALKER (1990), Three-dimensional, elastic bodies in rolling contact. Kluwer Academic Publishers Dordrecht, Boston, London.CrossRefMATHGoogle Scholar
  5. A. KLARBRING, A. MIKELIC, M. SHILLOR (1990), A global existence result for the quasistatic frictional contact problem with normal compliance. Proc. IV. Meeting on Unilateral Problems in Structural Analysis, Ed. F. Maceri et al.,Birkhhuser Verlag, Zürich.Google Scholar
  6. [6]
    J.T. ODEN, E.B. PIRES (1983), Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity. Journal of Applied Mechanics 50 p. 6776.Google Scholar
  7. [7]
    P.D. PANAGIOTOPOULOS (1975), A nonlinear programming approach to the unilateral contact and friction -boundary value problem in the theory of elasticity. Ingenieur Archiv 44, p. 421–432.Google Scholar

References of Section 6

  1. [1]
    N. AHMADI (1982), Non-Hertzian normal and tangential loading of elastic bodies in contact. Ph.D Thesis, Appendix C2. Northwestern University, Evanston IL USA.Google Scholar
  2. [2]
    R.H., BENTALL, K.L. JOHNSON (1967), Slip in the rolling contact of two dissimilar elastic cylinders. International Journal of Mechanical Sciences 9, p. 389–404.Google Scholar
  3. [3]
    R.H., BENTALL, K.L. JOHNSON (1968), An elastic strip in plane rolling contact. International Journal of Mechanical Sciences 10, p. 637.CrossRefGoogle Scholar
  4. [4]
    G.F.M. BRAAT, J.J. KALKER (1993), Theoretical and experimental analysis of the rolling contact between two cylinders coated with multilayered viscoelastic rubber, in: A.H. Aliabadi and C.A. Brebbia ( Eds.) Contact Mechanics, Computational Techniques; Contact Mechanics Publications, pp. 119–126.Google Scholar
  5. [5]
    H. BUFLER (1959), Zur Theorie der rollenden Reibung. Ingenieur Archiv 27, p. 137.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    F.C. CARTER (1926), On the action of a locomotive driving wheel. Proceedings of the Royal Society of London, A112, p. 151–157.Google Scholar
  7. [7]
    H. FROMM (1927), Berechnung des Schlupfes beim Rollen deformierbarer Scheiben. Zeitschrift für angewandte Mathematik und Mechanik 7, p. 27–58.Google Scholar
  8. [8]
    A. GROSS-THEBING (1992), Lineare Modellierung des instationären Rollkontaktes von Rad und Schiene. Fortschritt Berichte VDI, Reihe 12, Nr. 199, VDI-Verlag, Düsseldorf.Google Scholar
  9. [9]
    D.J. HAINES, E. OLLERTON (1963), Contact stresses in flat elliptical contact surfaces which support radial and shearing forces during rolling. Proceedings of the Institute of Mechanical Engineering Science, 179 Part 3.Google Scholar
  10. [10]
    J.J. KALKER (1967), On the rolling contact of two elastic bodies in the presence of dry friction. Thesis Delft.Google Scholar
  11. [11]
    J.J. KALKER (1971), A minimum principle of the law of dry friction with application to elastic cylinders in rolling contact. Journal of Applied Mechanics, 38, p. 875–880, 881–887.Google Scholar
  12. [12]
    J.J. KALKER (1990), Three-dimensional elastic bodies in rolling contact. Kluwer Academic Publishers (Dordrecht) 314+XXVI pp.Google Scholar
  13. [13]
    J.J. KALKER (1991), Viscoelastic multilayered cylinders rolling with dry friction. Journal of Applied Mechanics, 58 p. 666–679.Google Scholar
  14. [14]
    J.J. KALKER, J. PIOTROWSKI (1989), Some new results in rolling contact. Vihicle System Dynamics 18, p. 223–242.CrossRefGoogle Scholar
  15. [15]
    J.B. NIELSEN (1998), New developments in the theory of wheel/rail contact mechanics. Thesis Lyngby IMM-PHD-1998–51.Google Scholar
  16. [16]
    D.A. SPENCE (1975), The Hertz problem with finite friction. Journal of Elasticity, 5, p. 297–319.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • J. J. Kalker
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations