Skip to main content

Lectures on Mechanics of Random Media

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 430))

Abstract

Composites made of n constituents, or phases, firmly bonded across interfaces, will be considered. Each phase conforms to a constitutive relation of the form

(1.1)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-Amoz, M. 1966. Variational principles in anisotropic and nonhomogeneous elastokinetics. Quart. Appl. Math. XXIV, 82–86.

    MathSciNet  Google Scholar 

  • Beran, M. J. 1965. Use of the variational approach to determine bounds for the effective permittivity of a random composite. Nuovo Cimento 38, 771–782.

    Article  Google Scholar 

  • Beran, M. J. and McCoy, J. J. 1970. Mean field variations in a statistical sample of heterogeneous linearly elastic solids. Int. J. Solids Struct. 6, 1035–1054.

    Article  MATH  Google Scholar 

  • Budiansky, B. 1965. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13, 223–227.

    Article  Google Scholar 

  • Foldy, L. L. 1945. Multiple scattering theory of waves. Phys. Rev. 67, 107–119.

    Article  MATH  MathSciNet  Google Scholar 

  • Gerard, P. 1991. Microlocal defect measures. Commun. Partial Dif. Equat. 16, 1761–1794.

    Article  MATH  MathSciNet  Google Scholar 

  • Gurtin, M. E. 1964. Variational principles in linear elastodynamics. Arch. Rat. Mech. Anal. 16, 34–50.

    MATH  MathSciNet  Google Scholar 

  • Keller, J. B. 1964. Stochastic equations and wave propagation in random media. Proc. Symposia in Applied Mathematics, Vol. XVI, Stochastic Processes in Mathematical Physics and Engineering,pp. 145–170. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Kinra, V. K. 1984. Acoustical and optical branches of wave propagation in an epoxy matrix containing a random distribution of lead inclusions. Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, Eds.), pp. 983–992. Plenum, New York.

    Google Scholar 

  • Kinra, V. K. 1985. Dispersive wave propagation in random particulate composites. Recent Advances in Composites in the United States and Japan, ASTM STP 864 (J. R. Vinson and M. Taya, Eds.), pp. 309–325. ASTM, Philadelphia.

    Google Scholar 

  • Hashin, Z. and Shtrikman, S. T. 1962. On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10, 335–342.

    Article  MathSciNet  Google Scholar 

  • Hashin, Z. and Shtrikman, S. T. 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140.

    Article  MATH  MathSciNet  Google Scholar 

  • Hill, R. 1965. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222.

    Article  Google Scholar 

  • John, F. and Nirenberg, L. 1961. On functions of bounded mean oscillation. Communs. Pure Appl. Math. 14, 415–426.

    Article  MATH  MathSciNet  Google Scholar 

  • Luciano, R. and Willis, J. R. 2000. Bounds on non-local effective relations for random composites loaded by configuration-dependent body force. J. Mech. Phys Solids 48, 1827–1849.

    Article  MATH  MathSciNet  Google Scholar 

  • Maxwell, J. C. 1904 A Treatise on Electricity and Magnetism ( Third edition ). Clarendon Press, Oxford.

    Google Scholar 

  • Milton, G. W. 1982. Bounds on the elastic and transport properties of two-component composites. J. Mech. Phys. Solids 30, 177–191.

    Article  MATH  MathSciNet  Google Scholar 

  • Ponte Castaneda, P. 1991. The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids 39, 45–71.

    Article  MATH  MathSciNet  Google Scholar 

  • Ponte Castaneda, P. 1996. Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. J. Mech. Phys. Solids 44, 827–862.

    Article  MATH  MathSciNet  Google Scholar 

  • Ponte Castaneda, P. and Tiberio, E. 2000. A second-order homogenization method in finite elasticity and applications to black-filled elastomers. J. Mech. Phys. Solids 48, 1389–1411.

    Article  MATH  MathSciNet  Google Scholar 

  • Ponte Castaneda, P. and Willis, J. R. 1999. Variational second-order estimates for nonlinear composites. Proc. R. Soc. Lond. A455, 1799–1811.

    Article  MATH  Google Scholar 

  • Sabina, F. J. and Willis, J. R. 1988. A simple self-consistent analysis of wave propagation in particulate composites. Wave Motion 10, 127–142.

    Article  MATH  Google Scholar 

  • Sabina, F. J. and Willis, J. R. 1993. Self-consistent analysis of waves in a polycrystalline medium. Eur. J. Mechanics A/Solids 12, 265–275.

    MATH  Google Scholar 

  • Sabina, F. J., Smyshlyaev, V. P. and Willis, J. R. 1993a. Self-consistent analysis of waves in a matrix-inclusion composite. I. Aligned spheroidal inclusions. J. Mech. Phys. Solids 41, 1573–1588.

    Article  MATH  MathSciNet  Google Scholar 

  • Sabina, F. J., Smyshlyaev, V. P. and Willis, J. R. 1993b. Self-consistent analysis of waves in a matrix-inclusion composite. II. Randomly oriented spheroidal inclusions. J. Mech. Phys. Solids 41, 1589–1598.

    Article  MATH  MathSciNet  Google Scholar 

  • Sabina, F. J., Smyshlyaev, V. P. and Willis, J. R. 1993c. Self-consistent analysis of waves in a matrix-inclusion composite. III. A matrix containing penny-shaped cracks. J. Mech. Phys. Solids 41, 1809–1824.

    Article  MATH  MathSciNet  Google Scholar 

  • Sayers, C. M. and Smith, R. L. 1983. Ultrasonic velocity and attenuation in an epoxy matrix containing lead inclusions. J. Phy. D: Appl. Phys. 16, 1189–1194.

    Article  Google Scholar 

  • Schulgasser, K. 1976. Relationship between single-crystal and polycrystal electrical conductivity. J. Appl. Phys. 47, 1880–1886.

    Article  Google Scholar 

  • Talbot, D. R. S. and Willis, J. R. 1985. Variational principles for inhomogeneous nonlinear media. IMA J. Appl. Math. 35, 39–54.

    Article  MATH  MathSciNet  Google Scholar 

  • Talbot, D. R. S. and Willis, J. R. 1992. Some simple explicit bounds for the overall behaviour of nonlinear composites. Int. J. Solids Strct. 29, 1981–1987.

    Article  MATH  MathSciNet  Google Scholar 

  • Talbot, D. R. S. and Willis, J. R. 1994. Upper and lower bounds for the overall properties of a nonlinear composite dielectric. I. Random microgeometry. Proc. R. Soc. Lond. A447, 365–384.

    Article  MATH  Google Scholar 

  • Talbot, D. R. S. and Willis, J. R. 1997. Bounds of third order for the overall response of nonlinear composites. J. Mech. Phys. Solids 45, 87–111.

    Article  MATH  MathSciNet  Google Scholar 

  • Tartar, L. 1990. H-measures, a new approach for studying homogenization, oscillation and concentration effects in partial differential equations. Proc. R. Soc. Edinb. A115, 193–230.

    Article  MATH  MathSciNet  Google Scholar 

  • Van Tiel, J. 1984. Convex Analysis. Wiley, New York.

    MATH  Google Scholar 

  • Willis, J. R. 1977. Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J. Mech. Phys. Solids 25, 185–202.

    Article  MATH  Google Scholar 

  • Willis, J. R. 1980. A polarization approach to the scattering of elastic waves. I. Scattering by a single inclusion. J. Mech. Phys. Solids 28, 287–305.

    Article  MATH  MathSciNet  Google Scholar 

  • Willis, J. R. 1981a. Variational and related methods for the overall properties of composites. Advances in Applied Mechanics 21 (C. S. Yih, Ed.), pp. 1–78, Academic Press, New York.

    Google Scholar 

  • Willis, J. R. 1981b. Variational principles for dynamic problems for inhomogeneous elastic media. Wave Motion 3, 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  • Willis, J. R. 1982. Elasticity theory of composites. Mechanics of Solids. The Rodney Hill 60th Anniversary Volume (H. G. Hopkins and M. J. Sewell, Eds.), pp. 653–686. Pergamon, Oxford.

    Google Scholar 

  • Willis, J. R. 1983. The overall elastic response of composite materials. J. Appl. Mech. 50, 1202–1209.

    Article  MATH  Google Scholar 

  • Willis, J. R. 1985 The non-local influence of density variations in a composite. Int. J. Solids Struct. 21, 805–817.

    Article  MATH  Google Scholar 

  • Ying, C. F. and Truell, R. 1956. Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. J. Appl. Phys. 27, 1086–1097.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Willis, J.R. (2001). Lectures on Mechanics of Random Media. In: Jeulin, D., Ostoja-Starzewski, M. (eds) Mechanics of Random and Multiscale Microstructures. International Centre for Mechanical Sciences, vol 430. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2780-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2780-3_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83684-2

  • Online ISBN: 978-3-7091-2780-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics