Advertisement

The Randomness of Fatigue and Fracture Behaviour in Metallic Materials and Mechanical Structures

  • A. Pineau
Part of the International Centre for Mechanical Sciences book series (CISM, volume 430)

Abstract

This chapter is divided into three main parts. In the first part, an attempt is made to show how, in practice, various sources of randomness are taken into account in structural integrity analysis. The emphasis is laid upon the aspects related to the microstructural details of the materials, using various examples, including brittle cleavage fracture and ductile rupture in steels. This part deals also with statistical aspects related to fatigue loading. Probabilistic linear fracture mechanics is briefly introduced. The second part is devoted to statistical modelling of fatigue damage. Both high strain low cycle fatigue (LCF) and high cycle fatigue (HCF) are considered. In LCF the emphasis is laid on kinetic theories describing the evolution of multiple cracks population while in HCF results obtained in the frame of weakest link theory are presented. A short account of directionality aspects in multiaxial fatigue damage is given. The relative importance of volume and surface effects is also discussed. In this part, a number of examples dealing with various materials, including steels, nodular cast iron and Ni base superalloys, are given. The third part is devoted to statistical aspects in ductile fracture which is a research field much less investigated in the literature compared to fatigue damage and brittle fracture. This part strongly relies upon recent studies on C-Mn steels and duplex stainless steels. It is shown that these materials exhibit a large scatter in strain to failure and a significant size effect when specimens of different sizes are tested. Microstructural investigations using quantitative image analysis have shown that ductile damage in these materials is highly heterogeneous. In order to predict rupture, finite element models are used. The materials are described using Gurson and Rousselier plastic potentials for damaging porous materials. In order to model size effects and scatter, it is necessary to account for the distribution of damage nucleation rates (duplex stainless steels) and for the spatial inhomogeneous distribution of nucleation sites (C-Mn steels) which were experimentally measured. Comparison of experiments with simulations shows that the models are able to describe both crack initiation and propagation. In particular, they can predict mean value and scatter observed on strain to failure (tensile bars) and on initiation and propagation energies (fracture mechanics specimens).

Keywords

Fracture Toughness Fatigue Crack Fatigue Life Crack Growth Rate Fatigue Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auger, P., Danoix, F., Menaud, A., Bonnet, S., Bourgoin, J., and Guttman, M. (1990). Atom probe and transmission electron microscopy study of ageing of cast duplex stainless steel. Materials Science and Technology 6: 301–313.CrossRefGoogle Scholar
  2. Bai, Y. Knauf, G., and Hillenbrand H.G. (2000). Materials and design of high strength pipelines in ISOPE Proceedings:1–9.Google Scholar
  3. Bataille, A., Magnin, T., and Miller, K.J. (1992). Numerical simulation of surface fatigue microcracking processes. In Short Fatigue Cracks. ESIS 13, Edited by K.J. Miller and E.R. De Los Rios. Mechanical Engineering Publications. London:407–419.Google Scholar
  4. Bauvineau, L. (1996). Approche locale de la rupture ductile: Application à un acier Carbone-Manganèse. PhD Thesis, Ecole des Mines de Paris.Google Scholar
  5. Beremin, F.M. (1981). Cavity formation from inclusions in ductile fracture of A 508 steel. Metallurgical Transactions 12A: 723–731.CrossRefGoogle Scholar
  6. Beremin, F.M. (1983). A local criterion for cleavage fracture of a nuclear pressure vessel steel, Metallurgical Transactions 14A: 2277–2286.CrossRefGoogle Scholar
  7. Besson, J., and Foerch, R. (1997). Large scale object-oriented finite element code design. Computer Methods in Applied Mechanics and Engineering 142: 165–187.CrossRefMATHGoogle Scholar
  8. Besson, J., Devillers-Guerville, L., and Pineau, A. (2000). Modeling of scatter and size effect in ductile fracture: application to thermal embrittlement of duplex stainless steels. Engineering Fracture Mechanics 67: 169–190.CrossRefGoogle Scholar
  9. Bonnet, S., Bourgoin, J., Champredonde, J., Guttmann, D., and Guttmann, M. (1990). Relationship between evolution of mechanical properties of various cast duplex stainless steels and metallurgical and ageing parameters: outline of current EDF programmes. Materials Science and Technology 6: 221–229.CrossRefGoogle Scholar
  10. Brooks, J.A., and Thomson, A.W. (1991). Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. International Materials Reviews 36: 16–44.Google Scholar
  11. Bugat, S. (2000). Comportement et endommagement des aciers austéno-ferritiques vieillis: une approche micromécanique. PhD Thesis, Ecole des Mines de Paris.Google Scholar
  12. Bugat, S., Besson, J.; and Pineau, A. (1999). Micromechanical modelling of the behavior of duplex stainless steels. Computational Materials Science 16: 158–166.CrossRefGoogle Scholar
  13. Busso, E.P., Lei, Y., O’Dowd, N.P., and Webster, G.A. (1998). Mechanistic predictions of fracture processes in ferritic steel welds within the transition temperature regime. Journal of Engineering Materials and Technology 120: 328–337.CrossRefGoogle Scholar
  14. Carassou, S. (1999). Déclenchement du clivage dans un acier faiblement allié: rôle de l’endommagement ductile localisé autour des inclusions. PhD Thesis, Ecole des Mines de Paris.Google Scholar
  15. Carassou, S., Renevey, S., Marini, B., and Pineau, A. (1998). Modelling of the ductile to brittle transition in a low alloy steel. In Proceedings of ECF 12 Conference, Eds M.W. Brown, E.R. de los Rios and K.J. Miller, EMAS, 2: 691–696.Google Scholar
  16. Chantier-De Lima, I. (2000). Tolérance aux défauts initiaux et effets de surface: dimensionnement à la fatigue de pièces de fonderie. PhD Thesis, ENS Cachan.Google Scholar
  17. Clément, P., Angeli, J.P., and Pineau, A. (1984). Short crack behaviour in nodular cast iron. Fatigue and Fracture of Engineering Materials and Structures 7: 251–265.CrossRefGoogle Scholar
  18. Cotterell, B., and Rice, J. (1980). Slightly curved or kinked cracks. International Journal of Fracture 16: 155–169.CrossRefGoogle Scholar
  19. De Bussac, A. (1994). Predictions of the competition between surface and internal fatigue crack initiation in PM alloys. Fatigue and Fracture of Engineering Materials and Structures 17: 1319–1325.Google Scholar
  20. De Bussac, A., and Lautridou, J.C. (1993). A probabilistic model for prediction of LCF surface crack initiation in PM alloys. Fatigue and Fracture of Engineering Materials and Structures 16: 861–874.CrossRefGoogle Scholar
  21. Decamp, K., Bauvineau, L., Besson, J., and Pineau, A. (1997). Size and geometry effect on ductile rupture of notched bars in a C-Mn steel: experiments and modelling. International Journal of Fracture 88: 1–18.CrossRefGoogle Scholar
  22. Devillers-Guerville, L. (1998). Rupture d’aciers inoxydables austéno-ferritiques moulés, fragilisés par vieillissement à 350°C-400°C: Aspects microstructuraux - Simulation numérique de la dispersion et des effets d’échelle. PhD Thesis, Ecole des Mines de Paris.Google Scholar
  23. Devillers-Guerville, L., Besson, J., and Pineau, A. (1997). Notch fracture toughness of a cast duplex stainless steel: modelling of experimental scatter and size effects. Nuclear Engineering and Design 168: 211–225.CrossRefGoogle Scholar
  24. Ding, H-Z., Bierman, H., and Mughrabi, H. (2000). A statistical model of fatigue damage evolution in particulate–reinforced metal–-matrix–composites. Fatigue and Fracture of Engineering Materials and Structures 23: 847–858.CrossRefGoogle Scholar
  25. Ducourthial, E. (2001). Simulation et analyse de la propagation d’une fissure macroscopique dans un milieu élastique fragile microfissuré. PhD Thesis. Ecole des Mines de Paris.Google Scholar
  26. Fedelich, B. (1998). A stochastic theory for the problem of multiple surface crack coalescence. International Journal of Fracture 91: 23–45.CrossRefGoogle Scholar
  27. Fedelich, B., Frenz, H., Osterle, W., and Stark, K. (1996). Experimental and numerical evaluation of fatigue crack initiation and propagation for IN 738LC at 850°C. ECF 11. Mechanisms and Mechanics of Damage and Failure. ESIS: 1237–1242.Google Scholar
  28. Fedelich, B., Sievert, R., Haftaoglu, C., and Bendig, M. (1995). Modellierung des Schädigungsverhaltens der Legierung IN 738LC unter mehrachsiger thermisch-mechanischer Beanspruchung. Internal report BAM Berlin.Google Scholar
  29. Frund, J.M. (1998). Bases de données Françaises et Américaines de ténacité de l’acier des cuves REP. HT-42/98/012/A. Document EDF/EMA.Google Scholar
  30. Goto, M. (1992). Scatter characteristics of fatigue life and the behaviour of small cracks. Fatigue and Fracture of Engineering Materials and Structures 15: 953–963.CrossRefGoogle Scholar
  31. Gourgues, A.F. (2001). Overview: Electron back-scatter diffraction and cracking. Submitted to Materials Science and Technology.Google Scholar
  32. Gurson, A.L. (1977). Continuous theory of ductile rupture by void nucleation and growth: Part I–Yield criteria and flow rules for porous ductile metals. Journal of Engineering Materials and Structures 99: 2–15.Google Scholar
  33. Harada, S., and Endo, T. (1991). On the validity of Miner’s rule under sequential loading of rotating bending and cyclic torsion. In Fatigue under Biaxial and Multiaxial Loading. ESIS. Edited by K. Kussmaul, D. Mc Dianeid and D. Socie. Mechanical Engineering Publications. London:161–178.Google Scholar
  34. Heger, J.J. (1951). 885°F embrittlement of ferritic chromium–iron alloys. Metal Progress 60: 55–61.Google Scholar
  35. Hild, F. (2001). The Weibull law : a model of wide applicability. In Physical Aspects of Fracture. Bouchaud E., Jeulin D., Prioul C., and Roux S. (Eds). NATO/ASI Conference, Cargèse, Corsica (5–17 June 2000), Kluwer Academic Publishers.Google Scholar
  36. Hunt, RA., and Mc Cartney, L.N. (1979). A new approach to Weibull’s statistical theory of brittle fracture. International Journal of Fracture 15: 365–375.Google Scholar
  37. Hyzak, J.M., and Bernstein, I.M. (1982a). The effect of defects on the fatigue crack initiation process in two P/M superalloys. Part I. Fatigue origins. Metallurgical Transactions 13A: 33–43.CrossRefGoogle Scholar
  38. Hyzak, J.M., and Bernstein, I.M. (1982b). The effect of defects on the fatigue crack initiation process in two P/M superalloys. Part H. Surface–Subsurface transition. Metallurgical Transactions 13A: 45–52.Google Scholar
  39. ISO Standards. Petroleum and Natural Gas Industries - Pipeline Transportation Systems. Reliability Based Limit State Methods. (Version : 01-H). ISO/CD 16708.Google Scholar
  40. Jablonski, D.A. (1981). The effect of ceramic inclusions on the low cycle fatigue life of low carbon Astroloy subjected to hot isostatic pressing. Materials Science and Engineering 48: 189–198.CrossRefGoogle Scholar
  41. Jeulin, D. (2001). Some random structure models for homogenization and fracture statistics. This issue.Google Scholar
  42. Joly, P., and Pineau, A.,. This issue (1995). Modelling of the effect of thermal aging of duplex stainless steels on their fracture toughness. Scandinavian Journal of Metallurgy 24: 226–236.Google Scholar
  43. Joly, P., Cozar, R., and Pineau, A. (1990). Effect of crystallographic orientation of austenite on the formation of cleavage cracks in ferrite in an aged duplex stainless steel. Scripta Materiala 24: 2235–2240.CrossRefGoogle Scholar
  44. Joumet, B., Lefrançois, A., and Pineau, A. (1989). A crack closure study to predict the threshold behaviour of small cracks. Fatigue and Fracture of Engineering Materials and Structures 12: 237–246.CrossRefGoogle Scholar
  45. Kachanov, M. (1993). Elastic solids with many cracks and related problems. Advances in Applied Mechanics. 30 Edited by J. Hutchinson and T. Wu. Academic Press:259–445.Google Scholar
  46. Kantidis, E., Marini, B., Allais, L., and Pineau A. (1994). Validation of a statistical criterion for intergranular brittle fraction of a low alloy steel through uniaxial and biaxial (tension-torsion) tests. In International Journal of Fracture 66: 273–294.Google Scholar
  47. Kantidis, E., Marini, B., Allais, L., and Pineau, A. (1994b). A criterion for intergranular brittle fracture of a low alloy steel. Fatigue and Fracture of Engineering Materials and Structures 17: 619–633.CrossRefGoogle Scholar
  48. Larsson, M., Melander, A., and Nordgren, A. (1993). Effect of inclusions on fatigue behaviour of hardened spring steel. Materials Science and Technology 9: 235–245.CrossRefGoogle Scholar
  49. Lefrançois, A., Clément, P., and Pineau A. (1986). The growth of short fatigue cracks in an aluminium alloy in relation to crack closure effect. In International Conference on Fatigue of Engineering Materials and Structures. Proceedings of the Institution of Mechanical Engineers. MEP. London:C246/86: 59–65.Google Scholar
  50. Lemaître, J. (1985). A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology 107: 83–89.CrossRefGoogle Scholar
  51. Lindley, T., and Pineau, A. (1995). Short crack effects in fracture and fatigue. Revue de Métallurgie - Science et Génie des Matériaux February:187–201.Google Scholar
  52. Mc Cartney, L.N. (1979). Extensions of a statistical approach to fracture. International Journal of Fracture 15: 477–487.CrossRefMathSciNetGoogle Scholar
  53. Mc Cartney, L.N. (1979b). Can safety factors be reduced safely when designing against fatigue ? Fatigue of Engineering Materials and Structures 2: 387–400.CrossRefGoogle Scholar
  54. Mc Clintock, F.A. (1968). A criterion for ductile fracture by the growth of holes. Journal of Applied Mechanics 35: 363–371.CrossRefGoogle Scholar
  55. Miller, K.J. (1991). Metal fatigue–past, current and future. Proceedings of the Institution of Mechanical Engineers 205: 1–14.Google Scholar
  56. Minakawa, K., Nakamura, M., and Mc Evily, A.S. (1984). On the development of crack closure with crack advance in a ferritic steel. Scripta Metallurgica 18: 1371–1374.CrossRefGoogle Scholar
  57. Mudry, F. (1987). A local approach to cleavage fracture. Nuclear Engineering and Design 105: 65–76.CrossRefGoogle Scholar
  58. Murakami, Y., and Endo, M. (1994). Effects of defects, inclusions and inhomogeneities on fatigue strength. Fatigue 16: 163–182.CrossRefGoogle Scholar
  59. Naudin, C. (1999). Modélisation de la ténacité de l’acier de cuve REP en présence de zones de ségrégation, PhD Thesis, Ecole des Mines de Paris.Google Scholar
  60. Naudin, C., Frund, J.M., and Pineau, A. (1999). Intergranular fracture stress and phosphorus grain boundary segregation of a Mn-Ni-Mo steel. Scripta Materiala 40: 1013–1019.CrossRefGoogle Scholar
  61. Newman, J.C., and Raju, I.S. (1983). Stress intensity factor equations for cracks in three-dimensional finite bodies. ASTM STP 791: 238–265.Google Scholar
  62. Ochi, Y., Ishii, A., and Sasaki, S.K. (1985). An experimental and statistical investigation of surface fatigue crack initiation and growth. Fatigue and Fracture of Engineering Materials and Structures 8: 327–339.CrossRefGoogle Scholar
  63. Ohtani, R., Kitamura, T., and Tada, N. (1990). Stochastic simulation of initiation and growth of small surface cracks in creep-fatigue condition. In Proceedings of Fatigue 90. Edited by H. Kitagawa and T. Tanaka; Vol IV. Materials and Component Engineering Publications Ltd. Birmingham:2143–2148.Google Scholar
  64. Parkins, RN. and Singh, P.M. (1990). Stress corrosion crack coalescence. Corrosion 46: 485–499.CrossRefGoogle Scholar
  65. Pineau, A. (1981). Review of fracture micromechanisms and a local approach to predicting crack resistance in low strength steels. Proceedings of the 5 6 International Conference on Fracture. Cannes: D. François et al, Pergamon Press. 2: 533–577.Google Scholar
  66. Pineau, A. (1986). Short fatigue crack behaviour in relation to three-dimensional aspects and crack closure effect. Small Fatigue Cracks. Editors: R.O. R.tchie and J. Lankford. AIME: 191–211.Google Scholar
  67. Pineau, A. (1986). Short fatigue crack behaviour in relation to three-dimensional aspects and crack closure effects. In Small Fatigue Cracks. Edited by R.O. Ritchie and J. Lankford. Publication of the Metallurgical Society:191–211.Google Scholar
  68. Pineau, A. (1990). Superalloy discs durability and damage tolerance in relation to inclusions. In High Temperature Materials for Power Engineering. Edited by E. Bachelet et al. Kluwer Academic Publishers:913–934.Google Scholar
  69. Pineau, A. (1992). Global and local approaches of fracture - Tranferability of laboratory test results to components in Topics in Fracture and Fatigue. Springer Verlag, A.S Argon, Ed., 6:197–234.Google Scholar
  70. Pineau, A. (1995). Effect of inhomogeneities in the modelling of mechanical behaviour and damage of metallic materials. In Mechanical Behaviour of Materials. Edited by A. Bakker. Delft University, Delft, the Netherlands:1–22.Google Scholar
  71. Pineau; A. and Besson, J.(2000). Some new trends in modeling ductile rupture of structural alloys. In Symposium on Continuous Damage and Fracture. 23–27 October 2000, Cachan (France).Google Scholar
  72. Pineau, A., and Joly, P. (1991). Local versus global approaches to elastic-plastic fracture mechanics. Application to ferritic steels and a cast duplex stainless steel. In Defect Assessment in Components Fundamentals and Applications. ESIS/EGF9, Eds J.G. Blauel and K.H. Schwalbe. MEP, London: 381–414.Google Scholar
  73. Pineau, A., and Petrequin, P. (1980). La fatigue plastique oligocyclique . In La Fatigue des Matériaux et des Structures. Editors : C. Bathias and J.P. Ballon. Presses de l’Université de Montréal, Melaine S.A. Editeur : 107–161.Google Scholar
  74. Raoul, S., Marini; B., and Pineau, A. (1998). Effect of microstructure on the susceptibility of A533 steel to temper embrittlement. Journal of Nuclear Materials 227: 199–205.Google Scholar
  75. Renevey, S. (1998). Approches globale et locale de la rupture dans le domaine de transition ductile-fragile d’un acier faiblement allié. PhD Thesis, Orsay.Google Scholar
  76. Rice, J.R., and Tracey, D.M. (1969). On the ductile enlargement of voids in triaxial stress fields. Journal of Mechanics and Physics of Solids 17: 201–217.CrossRefGoogle Scholar
  77. Ritchie, R., Knott, J.F., and Rice, J.R. (1973). On the relationship between critical tensile stress and fracture toughness in mild steel. Journal of the Mechanics and Physics of Solids, 21: 395–410.CrossRefGoogle Scholar
  78. Rivalin, F. (1998). Développement d’aciers pour gazoducs à haute limite d’élasticité et ténacité élevée: mécanique et mécanismes de la rupture ductile à grande vitesse. PhD Thesis, Ecole des Mines de Paris.Google Scholar
  79. Rivalin, F., Besson, J., Di Fant, M., and Pineau, A. (2001). Ductile tearing of pipeline-steel wide plates. II Modelling of in-plane crack propagation. Engineering Fracture Mechanics 68: 347–364.CrossRefGoogle Scholar
  80. Rivalin, F., Di Fant, M., Besson, J., and Pineau, A. (2001). Ductile tearing of pipeline-steel wide plates. I Dynamic and quasi-static experiments. Engineering Fracture Mechanics 68: 329–345.CrossRefGoogle Scholar
  81. Robillard, M., and Cailletaud, G. (1991). Directionally defined damage in multiaxial low cycle fatigue: Experimental evidence and tentative modelling. In Fatigue under Biaxial and Multiaxial Loading. ESIS. Edited by K. Kussmaul, D. Mc Diarmid and D. Socie. Mechanical Engineering Publications. London:103–130.Google Scholar
  82. Rousselier,G. (1987). Ductile fracture models and their potential in local approach to fracture. Nuclear Engineering and Design 105: 97–111.CrossRefGoogle Scholar
  83. Schamblen, C.E., and Chang, D.R. (1995). Plus heat treated powder metal René 95. Metallurgical Transactions 16B: 775–784.Google Scholar
  84. Schijve, J. (1961). The endurance under program–fatigue testing. In Proceedings ICAF Symposium, Amsterdam, 1959. Edited by F.J. Planter and J. Schijve, Pergamon Press. 41–59.Google Scholar
  85. Schijve, J. (1993). A normal distribution or a Weibull distribution for fatigue lives. Fatigue and Fracture of Engineering Materials and Structures. 16: 851–859.CrossRefGoogle Scholar
  86. Schijve, J. (1994). Fatigue predictions and scatter. Fatigue and Fracture of Engineering Materials and Structures 17: 381–396.CrossRefGoogle Scholar
  87. Schijve, J. (1995). Multiple–site damage in aircraft fuselage structures. Fatigue and Fracture of Engineering Materials and Structures 18: 329–344.CrossRefGoogle Scholar
  88. Sims, C.T., Stoloff, N.S., and Hagel, W.C. (1986). Superalloys IL John Wiley and Sons, New York.Google Scholar
  89. Suresh, S. (1998). Fatigue of Materials. Cambridge University Press.Google Scholar
  90. Tai, W.H., and Yang, B.X. (1986). A new microvoid–damage model for ductile fracture. Engineering Fracture Mechanics 25: 377–384.CrossRefGoogle Scholar
  91. Tai, W.H., and Yang, B.X. (1987). A new damage mechanics criterion for ductile fracture. Engineering Fracture Mechanics 27: 371–378.CrossRefGoogle Scholar
  92. Tomkins, B (1968). Fatigue crack propagation and analysis. Philosophical Magazine 18: 1041–1066.CrossRefGoogle Scholar
  93. Tvergaard, V. (1982). On localization in ductile materials containing spherical voids. International Journal of Fracture 18: 237–252.Google Scholar
  94. Tvergaard, V., and Needleman, A. (1984). Analysis of cup-cone fracture in round tensile bar. Acta Metallurgica 32: 157–169.CrossRefGoogle Scholar
  95. Wallin, K. (1984). The scatter in Kw results. Engineering Fracture Mechanics 19: 1085–1093.CrossRefGoogle Scholar
  96. Wallin, K. (1985). The size effect in KID results. Engineering Fracture Mechanics 22: 149–163.CrossRefGoogle Scholar
  97. Wallin, K. (1989). The effect of ductile tearing on cleavage fracture probability in fracture toughness testing. Engineering Fracture Mechanics 32: 523–531.CrossRefGoogle Scholar
  98. Wallin, K.T. (1991). Statistical modelling of fracture in the ductile to brittle transition region. In Defect Assessment in Components-Fundamentals and Applications ESIS/EGF 9, Eds. J.G. Blauel and K.H. Schwalbe, MEP London. 415–445.Google Scholar
  99. Wallin, K.T., Saario, T., and TSrrönen, K. (1984). Statistical model for carbide induced brittle fracture in steel. Metal Science 18: 13–16.CrossRefGoogle Scholar
  100. Weiss, J., and Pineau, A. (1993). Fatigue and creep-fatigue damage of austenitic stainless steels under multiaxial loading. Metallurgical Transactions 24A: 2247–2261.CrossRefGoogle Scholar
  101. Weiss, J., and Pineau, A., (1992). Microstructurally-based simulation of multiaxial low-cycle fatigue damage of 316L stainless steel in terms of the behaviour of a crack population. In Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials —3. Edited by K.T. Rie. Elsevier Applied Science:82–87.Google Scholar
  102. Xin, X.J., and De Los Rios, E.R. (1994). Interactive effect of two coplanar cracks on plastic yielding and coalescence. Fatigue and Fracture of Engineering Materials and Structures 17: 1043–1056.CrossRefGoogle Scholar
  103. Xing Xiu-San (1985). Non equilibrium statistical theory of brittle fracture. Engineering Fracture Mechanics >24: 45–64.Google Scholar
  104. Yaacoub Agha, H., Béranger, A-S., Billardon, R., and Hild, F. (1998). High cycle fatigue behaviour of spheroidal graphite cast iron. Fatigue and Fracture of Engineering Materials and Structures 21: 287296.Google Scholar
  105. Yahya, O.R., Borit, F., Piques, R., and Pineau, A. (1999). Statistical modelling of intergranular brittle fracture in a low alloy steel. Fatigue and Fracture of Engineering Materials and Structures 21: 1485–1502.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • A. Pineau
    • 1
  1. 1.Ecole des Mines de ParisEvryFrance

Personalised recommendations