Skip to main content

Mechanics of Random Materials

Stochastics, Scale Effects and Computation

  • Chapter
Mechanics of Random and Multiscale Microstructures

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 430))

Summary

These notes provide an introduction to three aspects of mechanics of materials with random and multiscale microstructures: stochastic tools, scale effects in constitutive response, and computational methods. The overriding objective in the first Section (Basic Probability Tools) is to give an account of tools of probability theory and random (or so-called stochastic) processes — admittedly a vast subject area per se — at a level sufficient to describe non-deterministic, spatial material fluctuations. An attempt is made here to present random processes as objects parametrized by space coordinates, rather than time. The latter viewpoint is classical throughout most of the literature on random processes, but ours allows a natural generalization to random fields. Indeed, from that standpoint, each and every material microstructure may be considered a random field, although, as pointed out in the chapter by D. Jeulin, a different modeling strategy — based, say, on mathematical morphology — may be more suitable. The presentation covers scalar and vector processes and fields, all illustrated by measurements of paper mechanical properties. This introduces basic concepts of wide-sense stationarity and ergodicity, and sets the base for analyses of random continua.

The second section (Continuum Mechanics of Random Media), central to this chapter, focuses on the problem of Representative Volume Element (RVE) in the sense of Hill (1963). This is, in essence, the problem of coupled size and boundary condition dependence of constitutive response of microstructures described by random fields. Indeed, given three possible types of boundary conditions, we have three possible apparent responses, two of which (kinematic- and traction-controlled) hound on mesoscale the effective (in the macroscopic sense) response. The mesoscale domain involved is called a Statistical Volume Element (SVE). A review is provided here of the results obtained in this field over the past dozen years. We first study hierarchies of mesoscale bounds for elastic microstructures: both qualitative results via variational principles and quantitative results-via computational mechanics. The same type of approach is then sketched for inelastic microstructures, although a much wider range of results is given in the elastic case. This chapter culminates in a short review of two topics in wave propagation in random media: spectral finite elements and wavefront propagation. Here the wave length, respectively wavefront thickness, again introduces an SVE in place of an RVE.

The third section (Some Computational Mechanics Methods for Random Media) directly builds on, and supports, the second one. On one hand, it is shown how the mesoscale bounds can be used as input into the finite element methods, thus leading to micromechanics-based stochastic finite elements. The semblance, as well as contradistinction, of this approach to conventional finite elements and conventional random field models of continua is discussed. On the other hand; we provide a very brief introduction into spring network models, heavily favored by this author for rapid computation of statistics of mesoscale bounds of elastic materials, based on Monte Carlo-type generation of their random microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alzebdeh, K., Al-Ostaz, A., Jasiuk, I. and Ostoja-Starzewski, M. (1998), Fracture of random matrix-inclusion composites: scale effects and statistics, Intl. J. Solids Struct. 35 (19), 2537–2566.

    Article  MATH  Google Scholar 

  • Alzebdeh, K. and Ostoja-Starzewski, M. (1999), On a spring network model and effective elastic moduli of granular materials, ASME J. Appl. Mech. 66, 172–180.

    Article  Google Scholar 

  • Ashby, M.F. and Jones, D.R.H. (1986), Engineering Materials 2, Pergamon Press, Oxford.

    Google Scholar 

  • Askar, A. (1985). Lattice Dynamical Foundations of Continuum Theories, World Scientific, Singapore.

    Google Scholar 

  • Bazant, Z.P. and Planas, J. (1998), Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton.

    Google Scholar 

  • Beale; P.D. and Srolowitz, D.J. (1988), Elastic fracture in random materials, Phys. Rev. 337(10), 5500–5507.

    Google Scholar 

  • Belyaev, A.K. and Ziegler, F. (1994), Effective loss factor of heterogeneous elastic solids and fluids, in Trends in Applications of Mathematics to Mechanics (M.D.P. Monteiro Marques and J.F. Rodrigues, eds. ), 3–13.

    Google Scholar 

  • Benaroya, H. and Rehak, M. (1988), Finite element methods in probabilistic structural analysis: a selective review, Appl. Mech. Rev. 41 (5), 201–213.

    Article  Google Scholar 

  • Beran. M.J. (1968), Statistical Continuum Theories, Interscience, New York.

    Google Scholar 

  • Beran, M.J. (1974). Application of statistical theories for the determination of thermal, electrical, and magnetic properties of heterogeneous materials, in Mechanics of Composite Materials (ed. G.P. Sendeckyj) 2, 209–249.

    Google Scholar 

  • Beran, M.J. (2001), this volume.

    Google Scholar 

  • Brenner, C.E. (1991), Stochastic Finite Elements (Literature Review), Internal Working Report 35–91, Institute of Engineering Mechanics, University of Innsbruck.

    Google Scholar 

  • Brezzi, F. and Fortin, M. (1991), Mixed and Hybrid Finite Element Methods, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Budiansky, B. and O’Connell, R.J. (1976), Elastic moduli of a cracked solid, Intl. J. Solids Struct. 12, 81–97.

    Article  MATH  Google Scholar 

  • Carvalho, F.C.S. and Labuz, J.F. (1996), Experiments on effective elastic modulus of two-dimensional solids with cracks and holes, Intl. J. Solids Struct. 33 (28), 4119–4130.

    Article  Google Scholar 

  • Cash, J.R. and Wright, M.H. (1991), A deferred correction method for nonlinear two-point boundary value problems: Implementation and numerical evaluation, SIAM J. Sei. Stat. Comput. 12, 971–989.

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, J.Y., Huang, Y. and Ortiz, M. (1998), Fracture analysis of cellular materials, J. Mech. Phys. Solids 46, 789–828.

    Article  MATH  MathSciNet  Google Scholar 

  • Christensen, R.M. (1982), Theory of Viscoelasticity: an Introduction, Academic Press, New York.

    Google Scholar 

  • Cioranescu, D. and Saint Jean Paulin, J.. (1999), Homogenization of Reticulated Structures, Springer Verlag, New York.

    Book  MATH  Google Scholar 

  • Coleman, B.D. and Curtin, M.E. (1965), Arch. Rational Mech. Anal. 19, 239–265.

    Article  MATH  MathSciNet  Google Scholar 

  • Contreras, H. (1980), The stochastic finite-element method, Computers and Structures 12, 341–348.

    Article  MATH  MathSciNet  Google Scholar 

  • Costello, G.A. (1997), Theory of Wire Rope, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Dempsey, J.P. (2000), Research trends in ice mechanics, in ( G.J. Dvorak, ed.), Research Trends in Solid Mechanics, Intl. J. Solids Struct. 37(1–2), 131–153.

    Google Scholar 

  • Deodatis, G., Wall, W. and Shinozuka, M. (1991), Analysis of two-dimensional stochastic systems by the weighted integral method, in Computational Stochastic Mechanics (P.D. Spanos and C.A. Brebbia, eds., CMP-Elsevier, 395–406.

    Google Scholar 

  • DiMillo, Ivi. and Ostoja-Starzewski, M. (1998), Paper strength: Statistics and correlation structure, Intl. J. Fract. 90, L33 - L38.

    Google Scholar 

  • Ditlevsen, O. (1996). Dimension reduction and discretization in stochastic problems by regression method, in Mathematical Models for Structural Reliability Analysis, 51–138, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Doyle, J.F. (1997), Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Drugan, W.J. and Willis, J.R. (1996), A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. 11MIec..h. Phys. Solids 44, 497–524.

    Article  MATH  MathSciNet  Google Scholar 

  • Frisch, U. (1968), Wave propagation in random media, in Probabilistic Methods in Applied Mathematics 1 (A.T. Bharucha-Reid, ed.), 75–198, Academic Press.

    Google Scholar 

  • Ghanem, R. and Spanos, P.D. ( 1991. ), Stochastic Finite Elements: a Spectral Approach, Springer-Verlag, Berlin.

    Google Scholar 

  • Gusev, A.A. (1997), Representative volume element size for elastic composites: A numerical study, J. Mech. Phys. Solids 45, 1449.

    Article  MATH  Google Scholar 

  • Hazanov, S. (1998), Hill condition and overall properties of composites, Arch. Appl. Mech. 66, 385–394.

    Article  Google Scholar 

  • Hazanov, S. (1999). On apparent properties of nonlinear heterogeneous bodies smaller than the representative volume, Acta Mech. 134, 123–134.

    Article  MATH  MathSciNet  Google Scholar 

  • Hazanov. S. and Amieur, M. (1995), On overall properties of elastic heterogeneous bodies smaller than the representative volume, Intl. J. Eng. Sci. 33 (9), 1289–1301.

    Article  Google Scholar 

  • Hazanov, S. and Huet, C. (1994), Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume, J. Mech. Phys. Solids 41, 1995–2011.

    Article  MathSciNet  Google Scholar 

  • Herrmann, H. J., and Roux, S., eds., (1990), Statistical Models for Fracture of Disordered Media,Elsevier.

    Google Scholar 

  • Hill, R. (1950), The Mathematical Theory of Plasticity, Oxford University Press, London.

    MATH  Google Scholar 

  • Hill, R. (1963), Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids 11, 357–372.

    Article  MATH  Google Scholar 

  • Huet. C. (1982), Universal conditions for assimilation of a heterogeneous mate. rial to an effective medium, Mech. Res. Comm. 9 (3), 165–170.

    Article  MATH  Google Scholar 

  • Huet, C. (1990), Application of variational concepts to size effects in elastic heterogeneous bodies, J. Mech. Phys. Solids 38, 813–841.

    Article  MathSciNet  Google Scholar 

  • Huet, C. (1991), Hierarchies and bounds for size effects in heterogeneous bodies, Continuum Models and Discrete Systems 2 (G.A. Maugin, ed.), 127–134, Longman Scientific and Technical.

    Google Scholar 

  • Huet, C. (1994), Experimental characterization, micromechanical simulation and spatio-stochastic approach of concrete behaviours below the representative volume, PROBAMAT - Probabilities and Materials: Tests, Models and Applications (D. Breysse, ed.), Proc. NATO Adv. Res. Workshop Series E: 269, 241–260, Kluwer.

    Google Scholar 

  • Huet, C. (1995), Bounds and hierarchies for the overall properties of viscoelastic heterogeneous and composite materials, Arch. Mech. 47 (6), 1125–1155.

    MATH  MathSciNet  Google Scholar 

  • Huet, C. (1999a), Strength scaling law for elastic materials with interacting defects, in Mechanics of Quasi-brittle Materials and Structures ( G. Pijaudier-Cabot, Z. Bittnar and B. Gérard, eds.), 31–38, Hermes, Paris.

    Google Scholar 

  • Huet, C. (1999b), Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies, Mech. Mater. 31 (12), 787–829.

    Article  Google Scholar 

  • Huet, C. (2001), Extended Clapeyron formulae for viscoelasticity problems in the time domain and application to the boundary condition effect in random composite bodies, J. Mech. Phys. Solids 49, 675–706.

    Article  MATH  MathSciNet  Google Scholar 

  • Jeulin, D. (1997), Advances in Theory and Applications of Random Sets, World Scientific, Singapore.

    MATH  Google Scholar 

  • Jeulin, D. (2001), this volume.

    Google Scholar 

  • Jiang, M., Alzebdeh, K., Jasiuk, L and Ostoja-Starzewski, M. (2001a), Scale and boundary conditions effects in elasticity of random composites, Acta Mech. 148 (1–4), 63–78.

    Article  MATH  Google Scholar 

  • Jiang, M., Ostoja-Starzewski, M. and Jasiuk, I. (2001b), Scale-dependent bounds on effective elastoplastic response of random composites, J. Mech. Phys. Solids 49 (3), 655–673.

    Article  MATH  Google Scholar 

  • Kachanov, L.M. (1971), Foundations of the Theory of Plasticity, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Kachanov, M. (1993), Elastic solids with many cracks and related problems, Adv. Appl. Mech. 30, 259–445.

    Article  Google Scholar 

  • Krajcinovic, D. (1996), Damage Mechanics, North-Holland, Amsterdam.

    Google Scholar 

  • Kröner, E. (1972), Statistical Continuum Mechanics, CISM Lectures 92, Springer-Verlag, Wien.

    Google Scholar 

  • Kröner, E. (1994), Nonlinear elastic properties of microheterogeneous media, ASME J. Eng. Mater. Tech. 116, 325–330.

    Article  Google Scholar 

  • Kruyt, N.P. and Rothenburg, L. (2001), Statics of the elastic behaviour of granular materials, Int. J. Solids Struct. 38, 4879–4889.

    Article  MATH  Google Scholar 

  • Lemaitre, J. and Chaboche, J.-L. (1994), Mechanics of Solid Materials,Cambridge University Press.

    Google Scholar 

  • Liu, W.K., Belytschko, T. and Lua, Y.J. (1995), Probabilistic finite element method, in Probabilistic Structural Mechanics Handbook (C. Sundararajan, ed.), 70–105, Chapman and Hall, New York.

    Google Scholar 

  • Matheron, G. (1974), Random Sets and Integral Geometry,J. Wiley and Sons.

    Google Scholar 

  • Monette, L. and Anderson, M.P. (1999), Application of lattice models to fracture of heterogeneous materials under biaxial loads, Applied Mechanics in the Americas - 6th Pan American Congress of Applied Mechanics 7 ( Eds. P.B. Gonçalves, I. Jasiuk

    Google Scholar 

  • D. Pamplona, C. Steele, I. Weber and L. Bevilacqua), Rio de Janeiro, Brazil, 369–372.

    Google Scholar 

  • Noor, A.K. (1988), Continuum modeling for repetitive lattice structures, Appl. Mech. Rev. 41 (7), 285–296.

    Article  Google Scholar 

  • Ostoja-Starzewski, M. (1993), Micromechanics as a basis of stochastic finite elements and differences - an overview, Appl. Mech. Rev. (Special Issue: Mechanics Pan-America 1993 ) 46 (11, Pt. 2), S136 - S147.

    Google Scholar 

  • Ostoja-Starzewski, M. (1994), Micromechanics as a basis of continuum random fields, Appl. Mech. Rev. (Special Issue: Micromechanics of Random Media) 47 (1, Pt. 2), S221 - S230.

    Google Scholar 

  • Ostoja-Starzewski, M. (1998), Random field models of heterogeneous materials, Intl. J. Solids Struct. 35 (19), 2429–2455.

    Article  MATH  Google Scholar 

  • Ostoja-Starzewski, M. (1999a), Scale effects in materials with random distributions of needles and cracks, Mech. Mater. 31 (12), 883–893.

    Article  Google Scholar 

  • Ostoja-Starzewski, M. (1999b), Microstructural disorder, mesoscale finite elements, and macroscopic response, Proc. R. Soc. Lond. A455, 3189–3199.

    Article  MATH  MathSciNet  Google Scholar 

  • Ost.oja-Starzewski, M. (2000), Universal material property in conductivity of planar random microstructures, Phys. Rev. B62 (5), 2980–2983.

    Article  Google Scholar 

  • Ostoja-Starzewski, M. (2001), Microstructural randomness versus representative volume element in thermomechanics, ASME J. Appl. Mech.,in press.

    Google Scholar 

  • Ostoja-Starzewski, M. (2001/02), Lattice models in rnicromechanics, Appl. Mech. Rev.,in press.

    Google Scholar 

  • Ostoja-Starzewski, M., Jasiuk, I., Wang, W. and Alzebdeh, K. (1996), Composites with functionally graded interfaces: Meso-continuum concept and effective properties, Acta Mater. 44 (5), 2057–2066.

    Article  Google Scholar 

  • Ostoja-Starzewski, M., Quadrelli, M.B., and Stahl, D.C. (1999), Kinematics and stress transfer in quasi-planar random fiber networks, C. R. Acad. Sci. Paris IIG 327, 1223–1229.

    MATH  Google Scholar 

  • Ostoja-Starzewski, M. and Schulte, J. (1996), Bounding of effective thermal conductivities of rnultiscale materials by essential and natural boundary conditions, Phys. Rev. B54 (1), 278–285.

    Article  Google Scholar 

  • Ostoja-Starzewski, M. and J. Trebicki, J. (1999), On the growth and decay of acceleration waves in random media, Proc. R. Soc. Lond. A455, 2577–2614.

    Article  MATH  MathSciNet  Google Scholar 

  • Ostoja-Starzewski, M. and Wang, C. (1989), Linear elasticity of planar Delaunay networks: Random field characterization of effective moduli, Acta Mech. 80, 61–80.

    Article  MATH  MathSciNet  Google Scholar 

  • Ostoja-Starzewski, M. and Wang, X. (1999), Stochastic finite elements as a bridge between random material microstructure and global response, Comp. Meth. Appl. Mech. Eng. (Special Issue: Computational Stochastic Mechanics), 168 (1–4), 35–49.

    MATH  Google Scholar 

  • Ponte Castaneda, P. and Suquet, P. (1998), Nonlinear composites, Adv. Appl. Mech. 34, 171–302.

    Article  Google Scholar 

  • Prohorov, Yu.V. and Rozanov, Yu.A. (1969), Probability Theory, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Pshenichnov, G. I. (1993), A Theory of Latticed Plates and Shells, World Scientific, Singapore.

    Book  MATH  Google Scholar 

  • Reuss, A. (1929), Berechnung der Fliessgrenze Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, ZAMM 9, 49–58.

    Article  MATH  Google Scholar 

  • Rytov, S.M., Kravtsov, Yu.A., Tatarskii, V.I. (1987), Principles of Statistical Radiophysics, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Sah. K. (1991), Principe de Hill et homogénéisation des matériaux aléatoires, C. R. Acad. Sci. Paris II 312, 1–5.

    Google Scholar 

  • Sab, K. (1992), On the homogenization and the simulation of random materials, Europ. J. Mech., A/Solids 11, 585–607.

    MATH  MathSciNet  Google Scholar 

  • Sab, K. (1994), Homogenization of nonlinear random media by a duality method. Application to plasticity, Asymptotic Anal. 9, 311–336.

    MATH  MathSciNet  Google Scholar 

  • Sachs, G. (1928), Zur Ableitung einer Fliessbedingung, Z. Ver. Deutsch. Ing. 72, 734–736.

    Google Scholar 

  • Saigal, S. (1995), Stochastic boundary elements for two-dimensional potential flow in non-homogeneous media, Comp. Meth. Appl. Mech. Eng. 121, 211–230.

    Article  MATH  Google Scholar 

  • Sobczyk, K. (1985), Stochastic Wave Propagation, Elsevier-Polish Sci. Publ., Amsterdam-Warsaw.

    Google Scholar 

  • Stolz, C. (1986), General relationships between micro and macro scales for the non-linear behaviour of heterogeneous media, Modelling Small Deformations of Polycrystals (J. Gittus and J. Zarka, eds. ), 89–115.

    Google Scholar 

  • Stoyan, D., Kendall, W.S. and Mecke, J. (1987), Stochastic Geometry and its Applications,J. Wiley and Sons, New York.

    Google Scholar 

  • Suquet, P.M. (1986), Elements of homogenization for solid mechanics, in Homogenization Techniques for Composite Media, Lecture Notes in Physics 272, (ed. E. Sanchez-Palencia. and A. Zaoui ), 193–278.

    Google Scholar 

  • Suquet, P. ed. (1997), Continuum Micromechanics, Springer-Verlag, Wien.

    MATH  Google Scholar 

  • Taylor, G.I. (1938), Plastic strain in metals, J. Inst. Met. 62, 307–324.

    Google Scholar 

  • Terada, K., Hori, M., Kyoya, T. and Kikuchi, N. (2000), Simulation of the multi-scale convergence in computational homogenization approaches, Int. J. Solids Struct. 37, 2285–2311.

    Article  MATH  Google Scholar 

  • Torquato, S. (1991), Random heterogeneous media: microstructure and improved bounds on effective properties, Appl. Mech. Rev. 44, 37–76.

    Article  MathSciNet  Google Scholar 

  • Vanmarcke, E.H. (1983), Random Fields: Analysis and Synthesis, MIT Press, Cambridge, MA.

    Google Scholar 

  • Vakulenko, A.A. and Kachanov, M.L. (1971), Continuum model of a medium with cracks (in Russian), Mech. Solids 4, 54–59.

    Google Scholar 

  • Van Mier, J.G.M. (1997), Fracture Processes of Concrete, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Voigt; W. (1889), Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper, Wied. Ann. 38 573–587.

    Google Scholar 

  • Willis, J.R. (1981), Variational and related methods for the overall properties of composites, Adv. Appl. Mech. 21, 1–78.

    Article  MATH  MathSciNet  Google Scholar 

  • Willis, J.R. and Talbot, D.R.S. (1989), in Prue . 6th Symp. Continuum Models and Discrete Systems (ed. G.A. Maugin ), Longmans, London.

    Google Scholar 

  • Willis, J.R. (2001), this volume.

    Google Scholar 

  • Wozniak, C. (1970), Surface Lattice Structures (in Polish), Polish Sci. Publ., Warsaw.

    Google Scholar 

  • Yaglom, A.M. (1957), An Introduction to the Theory of Stationary Random Functions, Dover, New York.

    Google Scholar 

  • Zubelewicz, A. and Bazant, Z.P. (1987), Interface modeling of fracture in aggregate composites, ASCE J. Eng. Mech. 113, 1619–1630.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Ostoja-Starzewski, M. (2001). Mechanics of Random Materials. In: Jeulin, D., Ostoja-Starzewski, M. (eds) Mechanics of Random and Multiscale Microstructures. International Centre for Mechanical Sciences, vol 430. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2780-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2780-3_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83684-2

  • Online ISBN: 978-3-7091-2780-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics