Random Structure Models for Homogenization and Fracture Statistics

  • D. Jeulin
Part of the International Centre for Mechanical Sciences book series (CISM, volume 430)


In this chapter, various types of models of random media are introduced. After a presentation of the basic morphological measurements that are available to quantitatively characterize the geometry of random media, some morphological models of random media are reviewed. They may be useful on two different levels: to provide a description of the heterogeneous structure, and sometimes to predict macroscopic properties of materials. This is illustrated by the calculation of third order bounds of linear properties and by various fracture statistics models.


Duplex Stainless Steel Fracture Statistic Random Structure Poisson Point Process Boolean Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barbe, F., Decker, L., Jeulin, D., Cailletaud, G. (2001) Intergranular and intragranular behavior of polycristalline aggregates. Part 1: F. E. model, Int. J. Plasticity, 17 (4): 513–536.CrossRefMATHGoogle Scholar
  2. [2]
    Barett, K.E., Talbot, D.R.S. (1996) Bounds for the effective properties of a nonlinear two-phase composite dielectric, Proceedings of the CMDS8 Conference (Varna, 11–16 June 1995), ed K.Z. Markov, World Scientific Company, 92–99.Google Scholar
  3. [3]
    Baxevanakis, C., Jeulin, D., Renard, J. (1995) Fracture Statistics of a Unidirectional Composite, Int. J. Fracture, 73: 149–181.CrossRefGoogle Scholar
  4. [4]
    Baxevanakis, C., Jeulin, D., Lebon, B., Renard, J. (1998) Fracture statistics modeling of laminate composites, Int. J. Solids Struct., 35, N°19: 2505–2521.Google Scholar
  5. [5]
    Beran, M.J., and Molyneux, J. (1966) use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media, Q. Appl. Math., 24: 107–118.Google Scholar
  6. [6]
    Beran, M. J. (1968) Statistical Continuum Theories, J. Wiley, New York.Google Scholar
  7. [7]
    Beran, M. J. (2001) this volume.Google Scholar
  8. [8]
    Berdin, C., Cailletaud, G., Jeulin, D. (1993) Micro-Macro Identification of Fracture Probabilistic Models, Proc. of the International Seminar on Micromechanics of Materials, MECAMAT’93, Fontainebleau, 6–8 July 1993, 499–510, Eyrolles, Paris.Google Scholar
  9. [9]
    Berernin, F.M., (1983) A local criterion for cleavage fracture of a nuclear pressure vessel steel, Metall. Trans. A., 14A: 2277–2287.CrossRefGoogle Scholar
  10. [10]
    Bergman, D (1978) The dielectric constant of a composite material: a problem in classical physics, Phys. Rep. C, 43: 377–407.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Berryman, G.J. (1985) Variational bounds on elastic constants for the penetrable sphere model, J. Phys. D: Appl. Phys., 18: 585–597.CrossRefGoogle Scholar
  12. [12]
    Berryman, G.J., and Milton, G.W. (1988) Microgeometry of random composites and porous media, J. Phys. D: Appl. Phys., 21: 87–94.CrossRefGoogle Scholar
  13. [13]
    Bretheau, T., and Jeulin, D. (1989) Caractéristiques morphologiques des constituants et comportement à la limite élastique d’un matériau biphasé Fe/Ag, Rev. Phys. Appl., 24: 861–869.CrossRefGoogle Scholar
  14. [14]
    Cailletaud, G., Jeulin, D., Rolland, Ph. (1994) Size effect on elastic properties of random composites, Eng. Comput., 11 (2): 99–110.CrossRefGoogle Scholar
  15. [15]
    Chudnovsky, A., and Kunin, B. (1987) A probabilistic model of brittle crack formation, J. Appl. Phys., 62 (10): 4124.CrossRefGoogle Scholar
  16. [16]
    Chudnovsky, A., and Kunin, B. (1992) Statistical Fracture Mechanics, in Microscopic Simulations of Complex Hydrodynamic Phenomena, eds. M. Mareschal and B.L. Holian ( N.Y., Plenum Press, 1992 ): 345–360.CrossRefGoogle Scholar
  17. [17]
    Cox, D.R., and Isham, V. (1980) Point Processes, Chapman and Hall, New York.MATHGoogle Scholar
  18. [18]
    Decamp, K., Bauvineau, L., Besson, J., Pineau, A. (1997) Specimen size and geometry effects on ductile fracture of a C-Mn steel, Int. J. Fracture.Google Scholar
  19. [19]
    Decker, L., Jeulin, D., Tovena, I. (1998) 3D morphological analysis of the connectivity of a porous medium, Acta Stereol.,17 (1): 107–112.Google Scholar
  20. [20]
    Delisée, Ch.,.Jeulin, D., Michaud, F. (2001) Caractérisation morphologique et porosité en 3D de matériaux fibreux cellulosiques, C.R. Acad. Sci. Paris, t. 329, Série II b: 179–185.Google Scholar
  21. [21]
    Demarty, C.H., Grillon, F., Jeulin, D. (1996) Study of the contact permeability between rough surfaces from confocal microscopy, Microscopy, Microanalysis, Microstructure, 7: 505–511.Google Scholar
  22. [22]
    Devillers-Guerville, L., Besson, J., Pineau, A. (1997) Notch fracture toughness of a cast duplex stainless steel: modeling of experimental scatter and size effect, Nucl. Eng. Design.Google Scholar
  23. [23]
    Di Fant, M., Fontaine, A., Pineau, A. (1991) Dynamic crack propagation and crack arrest in a structural steel. Comparison between isothermal and thermal shock tests, in Dynamic Failure of Materials, Experiments and Numerics, H. P. Rossmanith and A. J. Kosakis (eds), Elsevier Applied Science, 42–56.Google Scholar
  24. [24]
    Harter, H.L. (1978) A bibliography of extreme-value theory, Int. Stat. Rev., 46: 279–306.MATHMathSciNetGoogle Scholar
  25. [25]
    Hashin, Z., and Shtrikman, S. (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys., 33: 3125–3131.CrossRefMATHGoogle Scholar
  26. [26]
    Hashin, Z. and Shtrikman, S. (1963) A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids, 11: 127–140.CrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    Hori, M. (1973) Statistical theory of the effective electrical, thermal, and magnetic properties of random heterogeneous materials. II. Bounds for the effective permittivity of statistically anisotropic materials, J. Math. Phys., 14: 19421948.Google Scholar
  28. [28]
    Iung, T., Di Fant, A., Pineau, A. (1992) Dynamic fracture and crack arrest behavior of a pipeline steel investigated with a new specimen geometry: the ring test, ESIS Conference, Varna, Bulgaria, 21–25 September 1992.Google Scholar
  29. [29]
    Jeulin, D., and Jeulin, P. (1981) Synthesis of Rough Surfaces by Random Morphological Models, Proc. 3rd European Symposium of Stereology, Stereol. Iugosl.,1981; 3 suppl. 1: 239–246.Google Scholar
  30. [30]
    Jeulin, D. (1986) Study of spatial distributions in multicomponent structures by image analysis, Proc. 4th European Symposium of Stereology (Giiteborg, 26–30 August 1985), Acta Stereol., 1986; 5/2: 233–239.Google Scholar
  31. [31]
    Jeulin, D; (1987) Random structure analysis and modelling by Mathematical Morphology, Proc. CMDS5, ed. A. J. M. Spencer, Balkema, Rotterdam, 217–226.Google Scholar
  32. [32]
    Jeulin, D. (1991) MMMlodèles morphologiques de structures aléatoires et de changement d’échelle, Thèse de Doctorat d’Etat, University of Caen.Google Scholar
  33. [33]
    Jeulin, D. (1992) Some Crack Propagation Models in Random Media, communication to the Symposium on the Macroscopic Behavior of the Heterogeneous Materials from the Microstructure, ASME, Anaheim, Nov 8–13, 1992. AMD Vo. 147, 161–170.Google Scholar
  34. [34]
    Jeulin, D. (1993) Damage simulation in heterogeneous materials from geodesic propagations, Eng. comput.,10 81–91.Google Scholar
  35. [35]
    Jeulin, D. (1993) Random models for the morphological analysis of powders“, Journal of Microscopy, 172, Part 1, 13–21.Google Scholar
  36. [36]
    Jeulin, D. (1994) Random structure models for composite media and fracture statistics. In: Advances in Mathematical Modelling of Composite Materials, K.Z. Markov (ed), 239–289, World Scientific Company (Advances in Mathematics for Applied Sciences, vol 15).Google Scholar
  37. [37]
    Jeulin, D., Baxevanakis, C., Renard, J. (1995) Statistical modelling of the fracture of laminate composites. In: Applications of Statistics and Probability, Lemaire M., Favre J.L., Mébarki A. (eds), 203–208, Balkema, Rotterdam.Google Scholar
  38. [38]
    Jeulin, D., and Le Coënt, A. (1996) Morphological modeling of random composites, Proceedings of the CMDS8 Conference (Varna, 11–16 June 1995), ed K.Z. Markov, World Scientific Company, 199–206.Google Scholar
  39. [39]
    Jeulin, D. (ed) (1997) Proceedings of the Symposium on the Advances in the Theory and Applications of Random Sets (Fontainebleau, 9–11 October 1996 ), World Scientific Publishing Company.Google Scholar
  40. [40]
    Jeulin, D., and Savary, L. (1997) Effective Complex Permittivity of Random Composites, J. Phys. I/ Condens.Matter, 7: 1123–1142.Google Scholar
  41. [41].Jeulin, D. (1998)
    Bounds of physical properties of some random structure. In: Proceedings of the C.MDS9 Conference (Istanbul, Turkey, June 29-July 3, 1998 ), E. Iran and K.Z. Markov (ed), World Scientific Publishing Company: 147–154.Google Scholar
  42. [42]
    Jeulin, D. (2000) Models of random damage, in Proc.Eurornat 2000 Conference, Tours, France, D. Miannay, P. Costa, D. François, A. Pineau (eds), 771–776.Google Scholar
  43. [43]
    Jeulin, D., Monnaie, P., Péronnet, F. (2001) Gypsum morphological analysis and modeling, Cement and Concrete Composites, 23/2–3, April/June 2001, 299–311.Google Scholar
  44. [44]
    Jeulin, D. Morphological Models of Random Structures,in preparation.Google Scholar
  45. [45]
    Kittl, P., and Diaz, G. (1986) Weibull’s fracture statistics, or probabilistic strength of materials: state of the art, Res. Mechanica, 25, 99–207.Google Scholar
  46. [46]
    Kröner, E. (1971) Statistical Continuum Mechanics, Springer Verlag, Berlin.Google Scholar
  47. [47]
    Kunin, B., and Gorelik, M. (1991) On representation of fracture profiles by fractional integrals of a Wiener process, J. Appl. Phys., 70, 12: 7651–7653.CrossRefGoogle Scholar
  48. [48]
    Le Coënt, A., and Jeulin, D. (1996) Bounds of effective physical properties for random polygons composites, C.R. Acad. Sci. Paris, t. 323, Série II b, 299–306.Google Scholar
  49. [49]
    Matheron, G. (1967) Eléments pour une théorie des milieux poreux,Paris.Google Scholar
  50. [50]
    Matheron, G. (1968) Composition des perméabilités en milieu poreux hétérogène: critique de la règle de pondération géométrique, Rev. IFP, 23, 201–218.Google Scholar
  51. [51]
    Matheron, G. (1975) Random sets and integral geometry, J. Wiley, New York.Google Scholar
  52. [52]
    McCoy, J.J. (1970) On the deplacement field in an elastic medium with random variations of material properties, Recent Advances in Engineering Sciences, Vol. 5, Gordon and Breach, New York: 235–254.Google Scholar
  53. [53]
    Miller, M.N. (1969) Bounds for the effective electrical, thermal and magnetic properties of heterogeneous materials, J. Math. Phys., 10: 1988–2004.CrossRefGoogle Scholar
  54. [54]
    Miller, M.N. (1969) Bounds for effective bulk modulus of heterogeneous materials, J. Math. Phys., 10: 2005–2013.CrossRefGoogle Scholar
  55. [55]
    Milton, G. (1980) Bounds on the complex dielectric constant of a composite material, Appl. Phys. Lett., 37, 300–302.CrossRefGoogle Scholar
  56. [56]
    Milton, G. (1982) Bounds on the elastic and transport properties of two component composites, J. Mech. Phys. Solids, 30, 177–191.CrossRefMATHMathSciNetGoogle Scholar
  57. [57]
    Ostoja-Starzewski, M. (2001) this volume.Google Scholar
  58. [58]
    Ostoja-Starzewski, M., and Stahl, D.C. (2001) Random fiber networks and special elastic orthotropy of paper, J. Elasticity, 60: 131–149.CrossRefGoogle Scholar
  59. [59]
    Ostoja-Starzewski, M. (2001/02) Lattice models in micromechanics, Applied Mechanics Reviews,in press.Google Scholar
  60. [60]
    Pélissonnier-Grosjean, C., Jeulin, D., Pottier, L., Fournier, D., Thorel, A. (1997) Mesoscopic modeling of the intergranular structure of Y2O3 doped aluminium nitride and application to the prediction of the effective thermal conductivity, to appear in Proc. Conference of the European Cerarnic Society, Versailles, June 22–26, 1997.Google Scholar
  61. [61]
    Pineau, A. (2001) this volume.Google Scholar
  62. [62]
    Ponte Castaneda, P. (1996) Variational methods for estimating the effective behavior of nonlinear composite materials, Proceedings of the CMDS8 Conference (Varna, 11–16 June 1995), ed K.Z. Markov, World Scientific Company, 268–279.Google Scholar
  63. [63]
    Quenec’h, J.L., Chermant, J.L, Coster, M. Jeulin, D. (1994) Liquid phase sintered materials modelling by random closed sets, Mathematical morphology and its applications to image processing, eds J. Serra and P. Soille, Kluwer Academic Pub., Dordrecht, 225–232.Google Scholar
  64. [64]
    Rintoul, M.D., and Torquato, S. (1997) Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model. J. Phys. A: Math. Gen., 30: L585 - L592.CrossRefGoogle Scholar
  65. [65]
    Savary, L., Jeulin, D., Thorel, A. (1999) Morphological analysis of carbon-polymer composite materials from thick sections, Acta Stereol., 18 (3): 297303.Google Scholar
  66. [66]
    Serra, J. (1982) Image analysis and mathematical morphology, Academic Press, London.MATHGoogle Scholar
  67. [67]
    Stoyan, D., Kendall, W.S., Mecke, J. (1987) Stochastic Geometry and its Applications,J. Wiley.Google Scholar
  68. [68]
    Silnutzer, N.R. (1972) Effective constants of statistically homogeneous materials, PhD thesis, University of Pennsylvania.Google Scholar
  69. [69]
    Torquato, S. and Stell, G. (1983) Microstructure of two-phase random media III. The n-point matrix probability functions for fully penetrable spheres, J. Chem. Phys., 79: 1505–1510.CrossRefMathSciNetGoogle Scholar
  70. [70]
    Torquato, S. and Lado, F. (1986) Effective properties of two phase disordered composite media: II Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres, Phys. Rev. B, 33: 6428–6434.CrossRefGoogle Scholar
  71. [71]
    Torquato, S. (1991) Random heterogeneous media: microstructure and improved bounds on effective properties, Appl. Mech. Rev. 44: 37–76.CrossRefMathSciNetGoogle Scholar
  72. [72]
    Watson, A.S., and R.L. Smith, R.L. (1985) An examination of statistical theories for fibrous materials in the light of experimental data, J. Mater. Sci., 20: 3260–3270.Google Scholar
  73. [73]
    Willis, J.R. (1981) Variational and related methods for the overall properties of composites, Advances in Applied Mechanics, 21: 1–78.CrossRefMATHMathSciNetGoogle Scholar
  74. [74]
    Willis, J.R. (1991) On methods for bounding the overall properties of nonlinear composites, J. Mech. Phys. Solids, 39, 1: 73–86.CrossRefMATHMathSciNetGoogle Scholar
  75. [75]
    Willis, J.R. (2001) this volume.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • D. Jeulin
    • 1
  1. 1.Ecole des Mines de ParisFontainebleauFrance

Personalised recommendations