Statistical Continuum Mechanics

An Introduction
  • M. J. Beran
Part of the International Centre for Mechanical Sciences book series (CISM, volume 430)


In these sections we outline some basic ideas underlying the solution of statistical problems in conductivity, acoustics and elasticity. The problems we consider are both static and dynamic and the statistical nature of the problems sterns from the fact that coefficients like the heat conductivity or sound speed are random functions of position. We first point out that simple averaging procedures are inadequate to determine effective properties of a medium except in the limit of small perturbations. In general they lead to an infinite hierarchy of statistical equations. For large variations of the random coefficients different techniques are required to obtain useful information. In the static problem variational principles are used extensively to find bounds on effective constants. However, we also discuss very approximate techniques like the self-consistent scheme. In the dynamic case we consider three techniques used in different-type problems. We show how to treat the problem of scattering by a dilute collection of discrete scatterers, propagation of acoustic waves through a medium like the ocean and forward and backward scattering of acoustic waves by a one-dimensional random medium.


Sound Speed Trial Function Elasticity Problem Perturbation Solution Effective Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Asch, W. Kohler, G. Papanicolaou, M. Postel and B. White (1991). SIAM Rev. 33, 519–625.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    M.J. Beran (1965), Il Nuovo Cimento, 38, 771–782.CrossRefGoogle Scholar
  3. [3]
    M.J. Beran (1968), Statistical Continuum Theories,J. Wiley.Google Scholar
  4. [4]
    M.J. Beran (1994), Waves in Random Media 4, 221–232.CrossRefMATHGoogle Scholar
  5. [5]
    M.J. Beran, T.A. Mason, B.L. Adams and T. Olsen (1996), J. Mech. Phys. Solids, 44, 1543–1563.CrossRefGoogle Scholar
  6. [6]
    M.J. Beran and J. Oz-Vogt (1994), Imaging through turbulence in the atmosphere, Progress in Optics, Ed. E. Wolf, XXXIII, 319–388.Google Scholar
  7. [7]
    M.J. Beran and A. Whitman (1972), J. Opt. Soc. Amer., 19, 701–707.Google Scholar
  8. [8]
    P. Corson (1974), J. Appl. Phys. 45, 3159–3164.CrossRefGoogle Scholar
  9. [9]
    Z. Hashin and S. Shtrikman (1962), J. Appl. Phys. 33, 3125.CrossRefMATHGoogle Scholar
  10. [10]
    B. Budiansky (1968), J. Mech. Phys. Solids 13, 223.CrossRefGoogle Scholar
  11. [11]
    A. Lshimaru (1978), Wave Propagation and Scattering in Random Media, Academic Press, N.Y..Google Scholar
  12. [12]
    J.J. McCoy and M.J. Beran (1976), J. Acoust. Soc. Amer., 59, 1142–1149.CrossRefMATHGoogle Scholar
  13. [13]
    S. Flatte, R. Dashen, W. Munk, K. Watson and F. Zachariasen (1979), Sound Transmission through a Fluctuating Ocean, Cambridge Univ. Press, Cambridge.Google Scholar
  14. [14]
    I. Jasiuk and M. Ostoja-Starzewski, (eds.) (1998), Micromechanics of random media II - Special issue of Int. J. Solids Struct. 35(19).Google Scholar
  15. [15]
    M. Ostoja-Starzewski and I. Jasiuk, (eds.) (1994), Micromechanics of Random Media - Special Issue of Appl. Mech. Rev. 47, (1, Part 2).Google Scholar
  16. [16]
    G.C. Papanicolaou and J.B. Keller (1971), SIAM Rev., 21, 287–305.MathSciNetGoogle Scholar
  17. [17]
    S. Torquato (1991), Random heterogeneous media: microstructure and improved bounds on effective properties, Appl. Mech. Rev. 44 37–76.CrossRefMathSciNetGoogle Scholar
  18. [18]
    J.R. Willis (1981), Adv. Appl. Mech. 21, 1–78.CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    V.I. Tatarskii (1971), The effects of the turbulent atmosphere on wave propagation, TT-68–50464, National Technical Information Service, Springfield, Va..Google Scholar
  20. [20]
    B.J. Uscinski (1977), The Elements of Wave Propagation in Random Media, McGraw Hill. N.Y.Google Scholar
  21. [21]
    A. Whitman and M.J. Beran (1970), J. Opt. Soc. Amer.,1595–1602.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • M. J. Beran
    • 1
  1. 1.Tel Aviv UniversityTel AvivIsrael

Personalised recommendations