Constitutive Equations for Homoionic Clays

  • Benjamin Loret
  • Alessandro Gajo
Part of the International Centre for Mechanical Sciences book series (CISM, volume 462)


Exchange of matter between the clay clusters (solid phase) and pore water (fluid phase) implies changes in the thermomechanical state of the porous medium. Both elastic and elastic-plastic properties are affected. Chemical effects act reversibly on the plastic properties by increasing or decreasing the preconsolidation stress and also by changing the shear-strength. But by the same token, they also implicitly trigger or prevent plastic strains. The analysis addresses the situation where the chemical dissolved in pore water does not dissociate, excluding electrical interactions.


Porous Medium Pore Water Constitutive Equation Void Ratio Triaxial Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bolt, G.H. (1956). Physico-chemical analysis of the compressibility of pure clays. Géotechnique, 6 (2), 86–93.CrossRefGoogle Scholar
  2. Di Maio, C. (1996). Exposure of bentonite to salt solution: osmotic and mechanical effects. Géotechnique, 46 (4), 695–707.CrossRefGoogle Scholar
  3. Di Maio, C. and G. Fenelli (1997). Influenza delle interazioni chimico-fisiche sulla de- formabilità di alcuni terreni argillosi. Rivista Italiana di Geotecnica, 1, 695–707.Google Scholar
  4. Di Maio, C. and R. Onorati (1999). Prove di laboratorio: influenza di composizione del liquido di cella. Rendiconti del XX Convegno Nazionale di Geotecnica, Parma, 87–94.Google Scholar
  5. Gajo, A. and B. Loret (2003). Finite element simulations of chemo-mechanical coupling in elastic-plastic homoionic expansive clays. Computer Methods in Applied Mechanics and Engineering, 192 (31–32), 3489–3530.CrossRefMATHGoogle Scholar
  6. Haase, R. (1990). Thermodynamics of Irreversible Processes. Dover Publications, New York.Google Scholar
  7. Heidug, W.K. and S.-W. Wong (1996). Hydration swelling of water-absorbing rocks: a constitutive model. Int. J. Num. Anal. Meth. Geomechanics, 20, 402–430.Google Scholar
  8. Loret, B. (1985), On the choice of elastic parameters for sand, Int. J. Num. Anal. Meth. Geomechanics, 9, 285–292.CrossRefGoogle Scholar
  9. Loret, B. and O. Harireche (1991). Acceleration waves, flutter instabilities and stationary discontinuities in inelastic porous media, J. Mechanics Physics Solids, 39 (5), 569–606.MathSciNetCrossRefMATHGoogle Scholar
  10. Loret, B., Rizzi, E. and F. Zerfa (2001). Relations between drained and undrained moduli in anisotropic elastic fluid-saturated porous media, J. Mechanics Physics Solids, 49 (11), 2593–2619.CrossRefMATHGoogle Scholar
  11. Loret, B., Hueckel, T. and A. Gajo (2002). Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive clays. Int. J. Solids and Structures, 39, 2773–2806.CrossRefMATHGoogle Scholar
  12. Loret, B. and F.S. Simôes (2003). Articular cartilage with intra-and extrafibrillar waters. A chemo-mechanical model. Mechanics of Materials, accepted for publication.Google Scholar
  13. Mesri, G. and R.E. Olson (1970). Shear-strength of Montmorillonite. Géotechnique, 20 (3), 261–270.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Benjamin Loret
    • 1
  • Alessandro Gajo
    • 2
  1. 1.Laboratoire Sols, Solides, StructuresInstitut National Polytechnique de GrenobleFrance
  2. 2.Dipartimento di Ingegneria Meccanica e StrutturaleUniversità di TrentoTrentoItalia

Personalised recommendations