Chemo-Mechanical Interactions in Geological and Biological Materials: examples

  • Benjamin Loret
  • Alessandro Gajo
  • Fernando M. Simões
Part of the International Centre for Mechanical Sciences book series (CISM, volume 462)


Examples of chemo-mechanical couplings are presented briefly. First, the notion of a semi-impermeable membrane is introduced together with the concept of osmosis. Chemical contraction and swelling are illustrated in chemically sensitive clays and articular cartilages. The heart muscle provides a prominent instance of electro-chemo-mechanical coupling. Reverse couplings play an important role in the engineering of soft tissues. Microstructural aspects of the chemically sensitive materials highlight the ubiquitous electric charges that promote the couplings.


Articular Cartilage Interlamellar Space Corneal Stroma Unconfined Compression Orthopaedic Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acar Y.B. (1992). Electrokinetic soil processing. A review of the state of the art. In Grouting, Soil Improvement and Geosynthetics, edited by R.H. Borden, R.D. Holtz and I. Juran. American Society of Civil Engineeers, New York, Geotechnical Special Publication No 30, 2, 1420–1432.Google Scholar
  2. Acar Y.B., Hamed J., Alshawabkeh A.N. and R.J. Gale (1994). Removal of cadmium ( II) from saturated kaolinite by application of electric current. Géotechnique, 44, 239–254.CrossRefGoogle Scholar
  3. Alshawabkeh A.N., Oszu-Acar E., Gale R.J. and S.K. Puppala (2002). Remediation of soils contaminated with tetraethyl lead by electrical fields. preprint.Google Scholar
  4. Buschmann M.D., Gluzband Y.A., Grodzinsky A.J., Kimura J.H. and E.B. Hunziker (1992). Chondrocytes in agarose culture synthesize a mechanically functional extra-cellular matrix. J. of Orthopaedic Research, 10, 745–758.CrossRefGoogle Scholar
  5. Buschmann M.D., Gluzband Y.A., Grodzinsky A.J., Kimura J.H. and E.B. Hunziker (1995). Mechanical compression modulates matrix biosynthesis in chondro-cyte/agarose culture. J. Cell Science, 108, 1497–1508.Google Scholar
  6. Carter D.R. and M. Wong (1990). Mechanical stresses in joint morphogenesis and main¬tenance. In Biomechanics of Diarthrodial Joints, Mow V.C., Ratcliffe A. and S.L.-Y. Woo eds., New York, Springer, 155–174.CrossRefGoogle Scholar
  7. Chen J., Anandarajah A. and H. Inyang (2000). Pore fluid properties and compressibility of kaolinite. J. of Geotechnical Engng. Div., Transactions of the ASCE, 126 (9), 798–807.Google Scholar
  8. Di Maio C. (1998). Discussion on ‘Exposure of bentonite to salt solution: osmotic and mechanical effects’. Géotechnique, 48 (3), 433–436.MathSciNetCrossRefGoogle Scholar
  9. Di Maio C. and G. Fenelli (1997). Influenza delle interazioni chimico-fisiche sulla de formabilità di alcuni terreni argillosi. Rivista Italiana di Geotecnica, 1, 695–707.Google Scholar
  10. Eisenberg S.R. and A.J. Grodzinsky (1985). Swelling of articular cartilage and other connective tissues: electromechanical forces. J. of Orthopaedic Research, 3, 148–159.CrossRefGoogle Scholar
  11. Eykholt G.R. and D.E. Daniel (1994). Impact of system chemistry on electro-osmosis in contaminated soil. J. of Geotechnical Engng. Div., Transactions of the ASCE, 120, 797–815.CrossRefGoogle Scholar
  12. Flory P.J. (1953). Principles of Polymer Chemistry. Cornell University Press, Ithaca, New York.Google Scholar
  13. Garcia A.M., Frank E.H., Grimshaw P.E. and A.J. Grodzinsky (1996) Contribution of fluid convection and electrical migration to transport in cartilage: relevance to loading. Archives Biochemistry Biophysics, 333, 317–325.CrossRefGoogle Scholar
  14. Grodzinsky A.J., Levenston M.E., Jin M. and E.H. Frank (2000) Cartilage Tissue Re-modeling in Response to Mechanical Forces, Annual Review of Biomedical Engng., 2, 691–713.CrossRefGoogle Scholar
  15. Grodzinsky A., Roth V., Myers E., Grossman W. and V.C. Mow (1981) The significance of electromechanical and osmotic forces in the nonequilibrium swelling behavior of articular cartilage in tension. J. of Biomech. Engng., Transactions of the ASME, 103, 221–231.CrossRefGoogle Scholar
  16. Guilak F., Jones W.R., Ting-Beall H.P. and G.M. Lee (1999) The deformation behav¬ior and mechanical properties of chondrocytes in articular cartilage. Osteoarthritis Cartilage, 7, 59–70.CrossRefGoogle Scholar
  17. Hancock W.O., Martyn D.A. and L.L. Huntsman (1993). Ca2+ and segment length de-pendence of isometric force kinetics in intact ferret cardiac muscle. Circulation Re-sarch, 73 (4), 603–610.CrossRefGoogle Scholar
  18. Hascall V.C., Heinegard D.K. and T.N. Wight (1991). Proteoglycans: metabolism and pathology. In Cell Biology of Extra Cellular Matrix, Hay E.D. ed., Plenum Press, New York, 149–175.CrossRefGoogle Scholar
  19. Huang Y. and K.M. Meek (1999) Swelling studies on the cornea and sclera: The effects of pH and ionic strength., Biophysical J., 77, 1655–1665.CrossRefGoogle Scholar
  20. Hunter P.J., McCulloch A.D. and H.E.D.J. ter Keurs (1998). Modelling the mechanical properties of cardiac muscle. Progress Biophysics Molecular Biology, 69, 289–331.CrossRefGoogle Scholar
  21. Kentish J.C., ter Keurs H.E.D.J., Ricciardi L., Bucx J.J.J. and M.I.M. Noble (1986). Comparison between the sarcomere length-force relations of intact and skinned tra-beculae from rat right ventricle. Circulation Resarch, 58–6, 755–768.CrossRefGoogle Scholar
  22. Laurencin C.T., Ambrosio A.M.A., Borden M.D. and J.A. Cooper Jr. (1999). Tissue Engineering: Orthopaedic Applications. Annual Review of Biomedical Engng., 1, 19–46.CrossRefGoogle Scholar
  23. Lee M.S., Trindade C.D., Ikenoue T., Schurman D.J., Goodman S.B. and R. Lane Smith (2002). Effects of shera stress on nitric oxide and matrix protein gene expression in human osteoathritic chondrocytes in vitro. J. of Orthopaedic Research, 20, 556–561.CrossRefGoogle Scholar
  24. Mauck R.L., Soltz M.A., Wang C.C.B., Wong D.D., Chao P.H., Valhmu W.B., Hung C.T. and G.A. Ateshian (2000). Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. of Biomech. Engng., Transactions of the ASME, 122, 252–260.CrossRefGoogle Scholar
  25. Mow V.C. and X.E. Guo (2002). Mechano-electrochemical properties of articular carti-lage: their inhomogeneities and anisotropies. Annual Review of Biomedical Engng., 4, 175–209.CrossRefGoogle Scholar
  26. Owens J.M., Lai W.M. and V.C. Mow (1991). Biomechanical effects due to Na+-Ca2+ exchange in articular cartilage. Transactions of the Orthopaedic Research Society, 37th Annual Meeting, March 4–7, Anaheim, California, p. 360.Google Scholar
  27. Pamukcu S. and J.K. Wittle (1992). Electrokinetic removal of selected heavy metals from soil. Environmental Progress, 11(3), 241–250, American Institute of Chemical EngineersGoogle Scholar
  28. Ragan P.M., Badger A.M., Cook M., Chin V.I, Gowen M., Grodzinsky A.J. and M.W. Lark (1999). Down-regulation of chondrocyte aggregan and type II collagne gene expression correlates with increases in static compression magnitude and duration. J. of Orthopaedic Research, 17, 836–842.CrossRefGoogle Scholar
  29. Simöes F.M. and B. Loret (2003). Mechanical effects of ionic replacements in articular cartilage. submitted for publication.Google Scholar
  30. Winslow R.L., Rice J.J., Jafri S., Marban E. and B. O’Rourke (1999). Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure. II Model studies. Circulation Resarch, 84, 571–586.CrossRefGoogle Scholar
  31. Yeung A.T., Hsu C. and R.M. Menon (1996). EDTA-enhanced electro-kinetic extraction of lead. J. of Geotechnical Engng. Div., Transactions of the ASCE, 122 (8), 666–673.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Benjamin Loret
    • 1
  • Alessandro Gajo
    • 2
  • Fernando M. Simões
    • 3
  1. 1.Laboratoire Sols, Solides, StructuresInstitut National Polytechnique de GrenobleFrance
  2. 2.Dipartimento di Ingegneria Meccanica e StrutturaleUniversità di TrentoTrentoItalia
  3. 3.Departamento de Engenharia CivilInstituto Superior TécnicoLisboaPortugal

Personalised recommendations