Swelling media: concepts and applications

  • Jacques M. Huyghe
  • Peter H. M. Bovendeerd
Part of the International Centre for Mechanical Sciences book series (CISM, volume 462)


This document deals with applications of mixture theory to the mechanics of porous media, with particular reference to living tissues, ionised media and finite deformation. The theory is built from first principles and the presentation is worked out for first year master students. References to experimental work and to applications are included.


Porous Medium Gibbs Free Energy Effective Stress Helmholtz Free Energy Strain Energy Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M A Biot. Theory of finite deformations of porous solids. Indiana University Mathematics J, 21 (7): 597–620, 1972.MathSciNetCrossRefGoogle Scholar
  2. H.P.G. Darcy. Les fontaines publiques de la ville de Dijon. Delmont, Paris, France, 1856.Google Scholar
  3. H J de Heus. Verification of mathematical models describing soft charged hydrated tissue behaviour. PhD dissertation, Eindhoven University of Technology, Department of Mechanical Engineering, Dec 1994.Google Scholar
  4. A.J.H. Frijns, J.M. Huyghe, and J.D. Janssen. A validation of the quadriphasic mixture theory for intervertebral disc tissue. Int. J. Eng. Sci., 35: 1419–1429, 1997.CrossRefMATHGoogle Scholar
  5. Y.C. Fung. Biomechanics: Mechanical properties of living tissues. Springer Verlag, New York, USA, 1993.Google Scholar
  6. J. M. Huyghe, C.F. Janssen, Y. Lanir, C.C. van Donkelaar, A. Maroudas, and D.H. van Campen. Experimental measurement of elctrical conductivity and electro-osmotic permeability of ionised porous media. In W. Ehlers and J. Bluhm, editors, Porous media: theoretical, experimental and numerical applications, pages 295–313. Springer Verlag, Berlin, Germany, 2002a.CrossRefGoogle Scholar
  7. J.M. Huyghe. Intra-extrafibrillar mixture formulation of soft charged hydrated tissues. Journal of Theoretical and Applied mechanics, 37 (3): 519–536, 1999.MATHGoogle Scholar
  8. J.M. Huyghe, G.B. Houben, M.R. Drost, and C.C. van Donkelaar. An ionised/nonionised dual porosity model of intervertebral disc tissue: experimental quantification of parameters. Biomechanics and modelling in mechanobiology, 2: 3–19, 2003.CrossRefGoogle Scholar
  9. J.M. Huyghe, C.F. Janssen, C.C. van Donkelaar, and Y. Lanir. Measuring principles of frictional coefficients in cartilaginous tissues and its substitutes. Biorheology, 39: 47–53, 2002b.Google Scholar
  10. J.M. Huyghe and J.D. Janssen. Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci., 35: 793–802, 1997.CrossRefMATHGoogle Scholar
  11. J.M. Huyghe and J.D. Janssen. Thermo-chemo-electro-mechanical formulation of saturated charged porous solids. Transport in Porous Media, 34: 129–141, 1999.CrossRefGoogle Scholar
  12. A. Katchalsky and P.F. Curran. Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, Ma, U.S.A., 1965.Google Scholar
  13. Y. Lanir, J. Seybold, R. Schneiderman, and J. M. Huyghe. Partition and diffusion of sodium and chloride ions in soft charged foam: the effect of external salt concentration and mechanical deformation. Tissue Engineering, 4 (4): 365–378, 1998.CrossRefGoogle Scholar
  14. A Maroudas. Physicochemical properties of articular cartilage, chapter 4, pages 215–290. In: M A R Freeman, ed. Adult articular cartilage. 2nd ed. Tunbridge Wells, Kent, UK: Pitman medical, 1979.Google Scholar
  15. A. Maroudas and P.G. Bullough. Permeability of articular cartilage. Nature, 219: 1260–1261, 1968.CrossRefGoogle Scholar
  16. W. Nernst. Zur kinetik der in loesung befindlichen koerper. Z. Phys. Chem., 2: 613–637, 1888.Google Scholar
  17. W. Nernst. Die electromotorische wirksamkeit der jonen. Z. Phys. Chem., 4: 129–181, 1889.Google Scholar
  18. A.A.H.J. Sauren, M.C. van Hout, A.A. van Steenhoven, F.E. Veldpaus, and J.D. Janssen. The mechanical properties of porcine aortic valve tissues. J. Biomech., 16: 327–337, 1983.CrossRefGoogle Scholar
  19. H Snijders. A triphasic model of the intervertebral disc. PhD dissertation, University of Maastricht, The Netherlands, Department of Health Sciences, 1994.Google Scholar
  20. A. J. Staverman. Non-equilibrium thermodynamics of membrane processes. Trans. Faraday Soc., 48: 176–185, 1952.CrossRefGoogle Scholar
  21. R. van Loon, J.M. Huyghe, M.W. Wijlaars, and F.P.T. Baaijens. 3d fe implementation of an incompressible quadriphasic mixture model. Int. J. Numer. Meth. Engng.,2003. in press.Google Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Jacques M. Huyghe
    • 1
  • Peter H. M. Bovendeerd
    • 1
  1. 1.Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations