Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 462))

  • 272 Accesses

Abstract

Recent advances in statistical mechanical molecular modelling of clay-fluid interactions will be discussed, with emphasis on empirical potential based Monte Carlo and molecular dynamics simulations. These methods will be illustrated by reference to the structure and dynamics of ions and solvent at hydrated clay surfaces. The aim of this research is to provide molecular scale insight into fluid dependent processes, for example; clay swelling, solute transport through clays, and clay compaction during burial. Models for the interparticle interactions will be reviewed, with particular reference to the various strategies used to represent clay-fluid systems. The general principles of Monte Carlo and molecular dynamics computer simulation will then be described. A number of specific issues arise when these techniques are applied to the properties of confined fluids: long-range interactions, system size limitations, boundary conditions, choice of thermodynamic ensemble, and statistical sampling. Throughout, we will compare and contrast recent computer simulations of clay-fluid systems with experimental data, and draw general lessons from these examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen M.P and Tildesley D.J. (1987) Computer Simulation of Liquids. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Andersen H.C. (1980) Molecular dynamics simualtions at constant pressure and/or temperature. J Chem. Phys. 72, 2384–2393.

    Article  Google Scholar 

  • Bash P.A., Singh U.G., Langridge R. and Kollman P.A. (1987) Free energy calculation by computer simulation. Science 49, 564–568.

    Article  Google Scholar 

  • Bleam W.F (1993) Atomic Theories of Phyllosilicates: Quantum Chemistry, Statistical Mechanics, Electrostatic Theory, and Crystal Chemistry. Rev.Geophysics, 31, 51–73.

    Article  Google Scholar 

  • Boek E.S., Coveney P.V. and Skipper N.T. (1995a) Molecular Modelling of Clay Hydration: A Study of Hysteresis Loops in the Swelling Curves of Sodium Montmorillonites. Langmuir, 11, 4629–4631.

    Article  Google Scholar 

  • Boek E.S., Coveney P.V. and Skipper N.T. (1995b) Monte Carlo Molecular Modelling Studies of Hydrated Li-, Na-, and K-smectites: Understanding the Role of Potassium as a Clay Swelling Inhibitor. JAm.Chem.Soc., 117, 12608–12617.

    Article  Google Scholar 

  • Boek E.S. and Sprik M. (2003) Ab initio molecular dynamics study of the hydration of a sodium smectite clay. J. Phys. Chem. B 107, 3251–3256.

    Article  Google Scholar 

  • Bounds D.G. (1985) A molecular dynamics study of the structure of water around the ions Li+, Na+, K+, Cat+, Ni2+ and Cl“. Mol.Phys. 54, 1335–1355.

    Article  Google Scholar 

  • Bridgeman C.H., Buckingham A.D., Skipper N.T. and Payne M.C. (1996) Ab initio total energy study of uncharged clays and their interaction with water. Mol.Phys., 89, 879–888.

    Article  Google Scholar 

  • Brindley G.W and Brown G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London, UK.

    Google Scholar 

  • Brodholt J. and Wood B. (1993) Simulations of the structure and thermodynamic properties of water at elevated pressures and temperatures. J.Geophys.Res: Solid Earth, 98, 513–536.

    Google Scholar 

  • Car R. and Parrinello M. (1985) Unified Approach for Molecular Dynamics and Density Functional Theory. Phys.Rev.Lett., 55, 2471–2474.

    Article  Google Scholar 

  • Chandrasekhar J., Spellmeyer D.C. and Jorgensen W.L. (1984) Energy Component Analysis for Dilute Aqueous Solutions of Li+, Na+, F- and Cl-ions. J.Am.Chem.Soc., 106, 903–910.

    Article  Google Scholar 

  • Chang F-R.C., Skipper N.T. and Sposito G. (1995) Computer Simulation of Interlayer Molecular Structure in Sodium Montmorillonite Hydrates. Langmuir, 11, 2734–2741.

    Article  Google Scholar 

  • Chang F-R.C., Skipper N.T. and Sposito G. (1997) Monte Carlo and molecular dynamics simulations of interfacial structure in lithium montmorillonite hydrates. Langmuir, 13, 2074–2082.

    Article  Google Scholar 

  • Chavez-Paez M, de Pablo L and de Pablo J.J (200la) Monte Carlo simulations of Ca-montmorillonite hydrates. J.Chem.Phys.,114, 10948–10953.

    Google Scholar 

  • Chavez-Paez M, van Workum K, de Pablo L and de Pablo J.J (200 lb) Monte Carlo simulations of Wyoming sodium montmorillonite hydrates. J.Chem.Phys.,114, 1405–1413.

    Google Scholar 

  • De Carvalho RJFL and Skipper NT (2001) Atomistic computer simulation of the clay-fluid interface in colloidal laponite. J.Chem.Phys. 114, 3727–3733.

    Article  Google Scholar 

  • Delville A. (1991) Modelling the Clay-Water Interface. Langmuir, 7, 547–555.

    Article  Google Scholar 

  • Delville A. (1992) Structure of Liquids at a Solid Interface: An Application to the Swelling of Clay by Water. Langmuir, 8, 1796–1805.

    Article  Google Scholar 

  • Delville A. (1993a) Structure and Properties of Confined Liquids: A Molecular Model of the Clay-Water Inteface. J.Phys.Chem., 97, 9703–9712.

    Article  Google Scholar 

  • Delville A. and Sokolowski S. (1993b) Adsorption of Vapour at a Solid Interface: A Molecular Model of Clay Wetting. J.Phys.Chem., 97, 6261–6271.

    Article  Google Scholar 

  • Enderby J.E. and Neilson G.W. (1981) The structure of electrolyte solutions. Rep. Prog.Phys., 44, 593–643.

    Article  Google Scholar 

  • Finney J.L., Quinn J.E., and Baum J.O. (1986) The water dimer potential surface. Water Science Reviews, 1, 93.

    Google Scholar 

  • Frenkel D. and Smit B. (1996) Understanding Molecular Simulation. Academic Press, San Diego, USA.

    Google Scholar 

  • Glaeser R. et Méring J. (1968) Domaines d’hydration homogène des smectites. C. r. hebd. Séan. Acad. Sci. Paris 267, 463–466.

    Google Scholar 

  • Guldbrand L., Jonsson B., Wennerstrom H. and Linse P (1983) Electrical double layer forces. A Monte Carlo study. J.Chem.Phys., 80, 2221–2228.

    Article  Google Scholar 

  • Guven N. (1992) Molecular Aspects of Clay-Water Interactions. Clay Water Interface and its Rheological Implication, editors N.Guven and R.M.Pollastro, Volume 4, CMS Workshop Lectures, The Clay Minerals Society, Boulder, Colorado, USA.

    Google Scholar 

  • Hensen E.J.M and Smit B. (2002) Why Clays Swell. J. Phys. Chem. B, 106, 12664–12667.

    Google Scholar 

  • Ichikawa Y., Kawamura K., Nakano M., Kitayama K. and Kawamura H. (1999). Unified molecular dynamics and homogenization analysis for bentonite behaviour: current results and future possibilities. Eng. Geology, 54, 21–31.

    Article  Google Scholar 

  • Ichikawa Y., Kawamura K., Nakano M., Kitayama K., Seiki T. and Theramast N. (2001). Seepage and consolidation of bentonite saturated with pure-and salt-water by the method of unified molecular dynamics and homogenization analysis. Eng. Geology, 60, 127–138.

    Article  Google Scholar 

  • Jorgensen W.L., Chandrasekhar J., Madura J., Impey R.W. and Klein M.L. (1983) Comparison of simple potential functions for modelling water. J.Chem.Phys., 79, 926–935.

    Article  Google Scholar 

  • Israelachvili J.N. and Wennerstrom H. (1996) The Role of Hydration and Water Structure in Biological and Colloidal Systems. Nature, 379, 219–225.

    Article  Google Scholar 

  • Jorgensen W.L. (1981) Transferable intermolecular potential functions for water, alcohols and ethers. Application to liquid water. J.Am.Chem.Soc., 103, 335–340.

    Article  Google Scholar 

  • Jorgensen W.L., Chandrasekhar J., Madura J., Impey R.W. and Klein M.L. (1983) Comparison of simple potential functions for modelling water. J.Chem.Phys., 79, 926–935.

    Article  Google Scholar 

  • Jorgensen W.L. (1984) Optimised Intermolecular Potential Functions for liquid hydrocarbons. J.Am.Chem.Soc., 106, 6638–6646.

    Article  Google Scholar 

  • Karaborni S., Smit B., Heidug W., Urai J. and van Oort E. (1996) The Swelling of Clays: Molecular of the Hydration of Montmorillonite. Science, 271, 1102–1104.

    Article  Google Scholar 

  • Kubicki J.D. and Bleam W.F. (1998). Molecular modeling of clays and mineral surfaces: a short course. CMS Workshop 12. Clay Minerals Society, Boulder, USA.

    Google Scholar 

  • Kuyucak S., Andersen O.S. and Chung S-H. (2001) Models of permeation in ion channels. Rep. Prog. Phys. 64, 1427–1472.

    Article  Google Scholar 

  • Lee C., Vanderbilt D., Laasonen K., Car R. and Parrinello M. (1992) Ab initio Studies on High Pressure Phases of Ice. Phys.Rev.Lett., 69, 462–465.

    Article  Google Scholar 

  • Lie G.C., Clementi E. and Yoshimine O. (1976) Study of the structure of molecular complexes. XIII. Monte Carlo simulation of liquid water with a configuration interaction pair potential. J.Chem.Phys., 64, 2314–2323.

    Article  Google Scholar 

  • Lybrand T.P and Kollman P.A. (1985) Water-water and water-ion potential functions including terms for many body effects. J.Chem.Phys., 83, 2923–2933.

    Article  Google Scholar 

  • Mahoney M.W. and Jorgensen W.L. (2000) A five-site model for liquid water and the reporduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112, 8910–8922.

    Article  Google Scholar 

  • Matsouka O., Clementi E. and Yoshimine M. (1976) CI study of the water dimer potential surface. J.Phys.Chem., 64, 1351–1361.

    Article  Google Scholar 

  • Mezei M. (1982) Excess free energy of different water models computed by Monte Carlo methods. Mol. Phys. 47, 1307–1315.

    Article  Google Scholar 

  • Neilson G.W. and Enderby J.E. (1989) Co-ordination of metal aquaions. Adv. Inorg. Chem., 34, 196–218.

    Google Scholar 

  • Newman A C D (1987) Chemistry of Clays and Clay Minerals. Wiley, New York, USA.

    Google Scholar 

  • Norrish K. (1954) The swelling of montmorillonite. Discuss Faraday Soc. 18, 120–132.

    Article  Google Scholar 

  • North F.K. (1990) Petroleum Geology. Unwin-Hyman, Boston, USA.

    Google Scholar 

  • Nosé S. (1986) An extension of the canonical ensemble molecular dynamics method. Mol. Phys. 57, 187191.

    Google Scholar 

  • Ohtaki H. and Radnai T. (1993). Structure and dynamics of hydrated ions. Chem. Rev., 93, 1157–1204.

    Article  Google Scholar 

  • Park S-H. and Sposito G. (2000) Monte Carlo simulation of total radial distribution functions for interlayer water in Li-, Na-, and K-montmorillonite hydrates. J. Phys. Chem. B 104, 4642–4648.

    Article  Google Scholar 

  • Payne M.C., Teter M.P., Allan D.C., Arias T.A. and Joannopoulos J.D. (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev.Mod.Phys., 64, 1045–1097.

    Article  Google Scholar 

  • Porion P., Al Mukhtar M., Faugére A.M., Pellenq R.J.M., Meyer S. and Delville A. (2003) Water self diffusion within nematic dispersions of nanocomposites: a multiscale analysis of 1H pulsed gradient spin-echo NMR measurements. J. Phys. Chem. B 107, 4012–4023.

    Article  Google Scholar 

  • Refson K. Skipper N.T. and McConnell J.D.C. (1993), Molecular dynamics simulation of water mobility in smectites. In Geochemistry of Clay-Pore fluid interactions, editors D.A.C.Manning and P.L.Hall, Mineralogical Society, Chapman and Hall, London, UK.

    Google Scholar 

  • Remler D.K. and Madden P.A. (1990) Molecular dynamics without effective pair potentials via the CarParrinello approach. Mol.Phys., 70, 921–966.

    Article  Google Scholar 

  • Shroll R.M. and Smith D.E. (1999) Molecular dynamics simulations in the grand canonical ensemble: application to clay mineral swelling. J.Chem.Phys., 111, 9025–9033.

    Article  Google Scholar 

  • Siqueira A. de, Skipper N.T., Coveney P.V and Boek E.S. (1997) Computer Simulation Evidence for Enthalpy driven Dehydration of Clays Under Sedimentary Basin Conditions. Mo1.Phys., 92, 1–6.

    Google Scholar 

  • Skipper N.T., Refson K. and McConnell J.D.C. (1991) Computer simulation of interlayer water in 2:1 clays. J.Chem.Phys., 94, 7434–7445.

    Article  Google Scholar 

  • Skipper N.T., Chang F-R.C. and Sposito G. (1995a) Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1. Methodology. Clays Clay Miner., 43, 285–293.

    Article  Google Scholar 

  • Skipper N.T., Chang F-R.C. and Sposito G. (1995b) Monte Carlo simulation of interlayer molecular struture in swelling clay minerals. 2. Monolayer Hydrates. Clays Clay Miner., 43, 294–303.

    Article  Google Scholar 

  • Smith D.E. (1998) Molecular computer simulation of the swelling properties and interlayer structure of cesium montmorillonite. Langmuir 14, 5959–5967.

    Article  Google Scholar 

  • Smith D.E. and Haymet A.D.J. (1992) Structure and dynamics of water and aqueous solutions: the role of flexibility. J.Chem.Phys., 96, 8450–8459.

    Article  Google Scholar 

  • Sposito G. and Prost R. (1982) Structure of water adsorbed on smectites. Chem.Rev., 82, 553–573.

    Article  Google Scholar 

  • Sposito G., Skipper N.T., Sutton R., Park S-H., Chang F-R, Soper A.K. and Greathouse J.A. (1999) Surface Geochemistry of the clay minerals. Proc. Natl. Acad. Sci. USA, 96, 3358–3364.

    Article  Google Scholar 

  • Titiloye J.O. and Skipper N.T. (2001) Molecular dynamics simulation of methane in sodium montmorillonite clay hydrates at elevated pressures and temperatures. Mol. Phys. 99, 899–906.

    Article  Google Scholar 

  • Tossell J.A. (1995) Mineral Surfaces: Theoretical Approaches. Edited by D.J.Vaughan and R.A.D.Pattrick. Chapman and Hall, London, UK.

    Google Scholar 

  • Vlot M.J., Huinink J. and van der Eerden J.P. (1999) Free energy calculations on systems of rigid molecules: an application to the TIP4P model of H2O. J. Chem. Phys. 110, 55–61.

    Article  Google Scholar 

  • Watanabe K. and Klein M.L. (1989) Effective pair potentials and the properties of water. Chem.Phys., 131, 157–167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Skipper, N. (2004). Molecular Modelling of Pore Fluids in Clays. In: Loret, B., Huyghe, J.M. (eds) Chemo-Mechanical Couplings in Porous Media Geomechanics and Biomechanics. International Centre for Mechanical Sciences, vol 462. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2778-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2778-0_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-21323-0

  • Online ISBN: 978-3-7091-2778-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics