Advertisement

Molecular Modelling of Pore Fluids in Clays

  • Neal Skipper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 462)

Abstract

Recent advances in statistical mechanical molecular modelling of clay-fluid interactions will be discussed, with emphasis on empirical potential based Monte Carlo and molecular dynamics simulations. These methods will be illustrated by reference to the structure and dynamics of ions and solvent at hydrated clay surfaces. The aim of this research is to provide molecular scale insight into fluid dependent processes, for example; clay swelling, solute transport through clays, and clay compaction during burial. Models for the interparticle interactions will be reviewed, with particular reference to the various strategies used to represent clay-fluid systems. The general principles of Monte Carlo and molecular dynamics computer simulation will then be described. A number of specific issues arise when these techniques are applied to the properties of confined fluids: long-range interactions, system size limitations, boundary conditions, choice of thermodynamic ensemble, and statistical sampling. Throughout, we will compare and contrast recent computer simulations of clay-fluid systems with experimental data, and draw general lessons from these examples.

Keywords

Pore Fluid Simulation Cell Potential Energy Function Clay Surface Interlayer Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen M.P and Tildesley D.J. (1987) Computer Simulation of Liquids. Clarendon Press, Oxford, UK.Google Scholar
  2. Andersen H.C. (1980) Molecular dynamics simualtions at constant pressure and/or temperature. J Chem. Phys. 72, 2384–2393.CrossRefGoogle Scholar
  3. Bash P.A., Singh U.G., Langridge R. and Kollman P.A. (1987) Free energy calculation by computer simulation. Science 49, 564–568.CrossRefGoogle Scholar
  4. Bleam W.F (1993) Atomic Theories of Phyllosilicates: Quantum Chemistry, Statistical Mechanics, Electrostatic Theory, and Crystal Chemistry. Rev.Geophysics, 31, 51–73.CrossRefGoogle Scholar
  5. Boek E.S., Coveney P.V. and Skipper N.T. (1995a) Molecular Modelling of Clay Hydration: A Study of Hysteresis Loops in the Swelling Curves of Sodium Montmorillonites. Langmuir, 11, 4629–4631.CrossRefGoogle Scholar
  6. Boek E.S., Coveney P.V. and Skipper N.T. (1995b) Monte Carlo Molecular Modelling Studies of Hydrated Li-, Na-, and K-smectites: Understanding the Role of Potassium as a Clay Swelling Inhibitor. JAm.Chem.Soc., 117, 12608–12617.CrossRefGoogle Scholar
  7. Boek E.S. and Sprik M. (2003) Ab initio molecular dynamics study of the hydration of a sodium smectite clay. J. Phys. Chem. B 107, 3251–3256.CrossRefGoogle Scholar
  8. Bounds D.G. (1985) A molecular dynamics study of the structure of water around the ions Li+, Na+, K+, Cat+, Ni2+ and Cl“. Mol.Phys. 54, 1335–1355.CrossRefGoogle Scholar
  9. Bridgeman C.H., Buckingham A.D., Skipper N.T. and Payne M.C. (1996) Ab initio total energy study of uncharged clays and their interaction with water. Mol.Phys., 89, 879–888.CrossRefGoogle Scholar
  10. Brindley G.W and Brown G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London, UK.Google Scholar
  11. Brodholt J. and Wood B. (1993) Simulations of the structure and thermodynamic properties of water at elevated pressures and temperatures. J.Geophys.Res: Solid Earth, 98, 513–536.Google Scholar
  12. Car R. and Parrinello M. (1985) Unified Approach for Molecular Dynamics and Density Functional Theory. Phys.Rev.Lett., 55, 2471–2474.CrossRefGoogle Scholar
  13. Chandrasekhar J., Spellmeyer D.C. and Jorgensen W.L. (1984) Energy Component Analysis for Dilute Aqueous Solutions of Li+, Na+, F- and Cl-ions. J.Am.Chem.Soc., 106, 903–910.CrossRefGoogle Scholar
  14. Chang F-R.C., Skipper N.T. and Sposito G. (1995) Computer Simulation of Interlayer Molecular Structure in Sodium Montmorillonite Hydrates. Langmuir, 11, 2734–2741.CrossRefGoogle Scholar
  15. Chang F-R.C., Skipper N.T. and Sposito G. (1997) Monte Carlo and molecular dynamics simulations of interfacial structure in lithium montmorillonite hydrates. Langmuir, 13, 2074–2082.CrossRefGoogle Scholar
  16. Chavez-Paez M, de Pablo L and de Pablo J.J (200la) Monte Carlo simulations of Ca-montmorillonite hydrates. J.Chem.Phys.,114, 10948–10953.Google Scholar
  17. Chavez-Paez M, van Workum K, de Pablo L and de Pablo J.J (200 lb) Monte Carlo simulations of Wyoming sodium montmorillonite hydrates. J.Chem.Phys.,114, 1405–1413.Google Scholar
  18. De Carvalho RJFL and Skipper NT (2001) Atomistic computer simulation of the clay-fluid interface in colloidal laponite. J.Chem.Phys. 114, 3727–3733.CrossRefGoogle Scholar
  19. Delville A. (1991) Modelling the Clay-Water Interface. Langmuir, 7, 547–555.CrossRefGoogle Scholar
  20. Delville A. (1992) Structure of Liquids at a Solid Interface: An Application to the Swelling of Clay by Water. Langmuir, 8, 1796–1805.CrossRefGoogle Scholar
  21. Delville A. (1993a) Structure and Properties of Confined Liquids: A Molecular Model of the Clay-Water Inteface. J.Phys.Chem., 97, 9703–9712.CrossRefGoogle Scholar
  22. Delville A. and Sokolowski S. (1993b) Adsorption of Vapour at a Solid Interface: A Molecular Model of Clay Wetting. J.Phys.Chem., 97, 6261–6271.CrossRefGoogle Scholar
  23. Enderby J.E. and Neilson G.W. (1981) The structure of electrolyte solutions. Rep. Prog.Phys., 44, 593–643.CrossRefGoogle Scholar
  24. Finney J.L., Quinn J.E., and Baum J.O. (1986) The water dimer potential surface. Water Science Reviews, 1, 93.Google Scholar
  25. Frenkel D. and Smit B. (1996) Understanding Molecular Simulation. Academic Press, San Diego, USA.Google Scholar
  26. Glaeser R. et Méring J. (1968) Domaines d’hydration homogène des smectites. C. r. hebd. Séan. Acad. Sci. Paris 267, 463–466.Google Scholar
  27. Guldbrand L., Jonsson B., Wennerstrom H. and Linse P (1983) Electrical double layer forces. A Monte Carlo study. J.Chem.Phys., 80, 2221–2228.CrossRefGoogle Scholar
  28. Guven N. (1992) Molecular Aspects of Clay-Water Interactions. Clay Water Interface and its Rheological Implication, editors N.Guven and R.M.Pollastro, Volume 4, CMS Workshop Lectures, The Clay Minerals Society, Boulder, Colorado, USA.Google Scholar
  29. Hensen E.J.M and Smit B. (2002) Why Clays Swell. J. Phys. Chem. B, 106, 12664–12667.Google Scholar
  30. Ichikawa Y., Kawamura K., Nakano M., Kitayama K. and Kawamura H. (1999). Unified molecular dynamics and homogenization analysis for bentonite behaviour: current results and future possibilities. Eng. Geology, 54, 21–31.CrossRefGoogle Scholar
  31. Ichikawa Y., Kawamura K., Nakano M., Kitayama K., Seiki T. and Theramast N. (2001). Seepage and consolidation of bentonite saturated with pure-and salt-water by the method of unified molecular dynamics and homogenization analysis. Eng. Geology, 60, 127–138.CrossRefGoogle Scholar
  32. Jorgensen W.L., Chandrasekhar J., Madura J., Impey R.W. and Klein M.L. (1983) Comparison of simple potential functions for modelling water. J.Chem.Phys., 79, 926–935.CrossRefGoogle Scholar
  33. Israelachvili J.N. and Wennerstrom H. (1996) The Role of Hydration and Water Structure in Biological and Colloidal Systems. Nature, 379, 219–225.CrossRefGoogle Scholar
  34. Jorgensen W.L. (1981) Transferable intermolecular potential functions for water, alcohols and ethers. Application to liquid water. J.Am.Chem.Soc., 103, 335–340.CrossRefGoogle Scholar
  35. Jorgensen W.L., Chandrasekhar J., Madura J., Impey R.W. and Klein M.L. (1983) Comparison of simple potential functions for modelling water. J.Chem.Phys., 79, 926–935.CrossRefGoogle Scholar
  36. Jorgensen W.L. (1984) Optimised Intermolecular Potential Functions for liquid hydrocarbons. J.Am.Chem.Soc., 106, 6638–6646.CrossRefGoogle Scholar
  37. Karaborni S., Smit B., Heidug W., Urai J. and van Oort E. (1996) The Swelling of Clays: Molecular of the Hydration of Montmorillonite. Science, 271, 1102–1104.CrossRefGoogle Scholar
  38. Kubicki J.D. and Bleam W.F. (1998). Molecular modeling of clays and mineral surfaces: a short course. CMS Workshop 12. Clay Minerals Society, Boulder, USA.Google Scholar
  39. Kuyucak S., Andersen O.S. and Chung S-H. (2001) Models of permeation in ion channels. Rep. Prog. Phys. 64, 1427–1472.CrossRefGoogle Scholar
  40. Lee C., Vanderbilt D., Laasonen K., Car R. and Parrinello M. (1992) Ab initio Studies on High Pressure Phases of Ice. Phys.Rev.Lett., 69, 462–465.CrossRefGoogle Scholar
  41. Lie G.C., Clementi E. and Yoshimine O. (1976) Study of the structure of molecular complexes. XIII. Monte Carlo simulation of liquid water with a configuration interaction pair potential. J.Chem.Phys., 64, 2314–2323.CrossRefGoogle Scholar
  42. Lybrand T.P and Kollman P.A. (1985) Water-water and water-ion potential functions including terms for many body effects. J.Chem.Phys., 83, 2923–2933.CrossRefGoogle Scholar
  43. Mahoney M.W. and Jorgensen W.L. (2000) A five-site model for liquid water and the reporduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112, 8910–8922.CrossRefGoogle Scholar
  44. Matsouka O., Clementi E. and Yoshimine M. (1976) CI study of the water dimer potential surface. J.Phys.Chem., 64, 1351–1361.CrossRefGoogle Scholar
  45. Mezei M. (1982) Excess free energy of different water models computed by Monte Carlo methods. Mol. Phys. 47, 1307–1315.CrossRefGoogle Scholar
  46. Neilson G.W. and Enderby J.E. (1989) Co-ordination of metal aquaions. Adv. Inorg. Chem., 34, 196–218.Google Scholar
  47. Newman A C D (1987) Chemistry of Clays and Clay Minerals. Wiley, New York, USA.Google Scholar
  48. Norrish K. (1954) The swelling of montmorillonite. Discuss Faraday Soc. 18, 120–132.CrossRefGoogle Scholar
  49. North F.K. (1990) Petroleum Geology. Unwin-Hyman, Boston, USA.Google Scholar
  50. Nosé S. (1986) An extension of the canonical ensemble molecular dynamics method. Mol. Phys. 57, 187191.Google Scholar
  51. Ohtaki H. and Radnai T. (1993). Structure and dynamics of hydrated ions. Chem. Rev., 93, 1157–1204.CrossRefGoogle Scholar
  52. Park S-H. and Sposito G. (2000) Monte Carlo simulation of total radial distribution functions for interlayer water in Li-, Na-, and K-montmorillonite hydrates. J. Phys. Chem. B 104, 4642–4648.CrossRefGoogle Scholar
  53. Payne M.C., Teter M.P., Allan D.C., Arias T.A. and Joannopoulos J.D. (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev.Mod.Phys., 64, 1045–1097.CrossRefGoogle Scholar
  54. Porion P., Al Mukhtar M., Faugére A.M., Pellenq R.J.M., Meyer S. and Delville A. (2003) Water self diffusion within nematic dispersions of nanocomposites: a multiscale analysis of 1H pulsed gradient spin-echo NMR measurements. J. Phys. Chem. B 107, 4012–4023.CrossRefGoogle Scholar
  55. Refson K. Skipper N.T. and McConnell J.D.C. (1993), Molecular dynamics simulation of water mobility in smectites. In Geochemistry of Clay-Pore fluid interactions, editors D.A.C.Manning and P.L.Hall, Mineralogical Society, Chapman and Hall, London, UK.Google Scholar
  56. Remler D.K. and Madden P.A. (1990) Molecular dynamics without effective pair potentials via the CarParrinello approach. Mol.Phys., 70, 921–966.CrossRefGoogle Scholar
  57. Shroll R.M. and Smith D.E. (1999) Molecular dynamics simulations in the grand canonical ensemble: application to clay mineral swelling. J.Chem.Phys., 111, 9025–9033.CrossRefGoogle Scholar
  58. Siqueira A. de, Skipper N.T., Coveney P.V and Boek E.S. (1997) Computer Simulation Evidence for Enthalpy driven Dehydration of Clays Under Sedimentary Basin Conditions. Mo1.Phys., 92, 1–6.Google Scholar
  59. Skipper N.T., Refson K. and McConnell J.D.C. (1991) Computer simulation of interlayer water in 2:1 clays. J.Chem.Phys., 94, 7434–7445.CrossRefGoogle Scholar
  60. Skipper N.T., Chang F-R.C. and Sposito G. (1995a) Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1. Methodology. Clays Clay Miner., 43, 285–293.CrossRefGoogle Scholar
  61. Skipper N.T., Chang F-R.C. and Sposito G. (1995b) Monte Carlo simulation of interlayer molecular struture in swelling clay minerals. 2. Monolayer Hydrates. Clays Clay Miner., 43, 294–303.CrossRefGoogle Scholar
  62. Smith D.E. (1998) Molecular computer simulation of the swelling properties and interlayer structure of cesium montmorillonite. Langmuir 14, 5959–5967.CrossRefGoogle Scholar
  63. Smith D.E. and Haymet A.D.J. (1992) Structure and dynamics of water and aqueous solutions: the role of flexibility. J.Chem.Phys., 96, 8450–8459.CrossRefGoogle Scholar
  64. Sposito G. and Prost R. (1982) Structure of water adsorbed on smectites. Chem.Rev., 82, 553–573.CrossRefGoogle Scholar
  65. Sposito G., Skipper N.T., Sutton R., Park S-H., Chang F-R, Soper A.K. and Greathouse J.A. (1999) Surface Geochemistry of the clay minerals. Proc. Natl. Acad. Sci. USA, 96, 3358–3364.CrossRefGoogle Scholar
  66. Titiloye J.O. and Skipper N.T. (2001) Molecular dynamics simulation of methane in sodium montmorillonite clay hydrates at elevated pressures and temperatures. Mol. Phys. 99, 899–906.CrossRefGoogle Scholar
  67. Tossell J.A. (1995) Mineral Surfaces: Theoretical Approaches. Edited by D.J.Vaughan and R.A.D.Pattrick. Chapman and Hall, London, UK.Google Scholar
  68. Vlot M.J., Huinink J. and van der Eerden J.P. (1999) Free energy calculations on systems of rigid molecules: an application to the TIP4P model of H2O. J. Chem. Phys. 110, 55–61.CrossRefGoogle Scholar
  69. Watanabe K. and Klein M.L. (1989) Effective pair potentials and the properties of water. Chem.Phys., 131, 157–167CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Neal Skipper
    • 1
  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations