Microstructural Description of Composites, Statistical Methods

  • Ryszard Pyrz
Part of the International Centre for Mechanical Sciences book series (CISM, volume 464)


For the purpose of mechanical modeling the behaviour of composite materials it is necessary to identify the descriptors that in a best way characterize the special dispersion of fillers. Different morphological measures are discussed along with the description of relevant experimental techniques and simulation methods.


Correlation Function Representative Volume Element Orientation Distribution Function Pair Correlation Function Point Pattern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Aboudi. Mechanics of Composite Materials. Elsevier, Amsterdam, 1991.MATHGoogle Scholar
  2. N.D. Alberola, G. Merle, and K. Bendarti. Unidirectional fibre-reinforced polymers: Analytical morphology approach and mechanical modelling based on the percolation concept. Polymer, 40:315–328, 1999.Google Scholar
  3. B. Altan, Z. Misirli, and H. Yorucu. The determination of the homogeneity in multiphase mixtures. Z. Metall, 81:221–228, 1990.Google Scholar
  4. G. Ausias, IF. Agassant, M. Vincent, P.G. Lafleur, P.A. Lavoie, and Carreau P J. Rheology of short glass fiber reinforced polypropylene. J. Rheol, 36:525–542, 1992.Google Scholar
  5. M. Axelsen and R. Pyrz. Correlation between fracture toughness and the microstructure morphology in transversely loaded unidirectional composites. In R. Pyrz, editor, Microstructure-Property Interactions in Composite Materials, pages 15–26. Kluwer Academic Publishers, Dordrecht, 1995a.Google Scholar
  6. M. Axelsen and R. Pyrz. Effect of microcrack formation in transversely loaded unidirectional composites. In N. Sottos, editor, Durability and Damage of Composite Materials, MD-Vol. 69–1, pages 239–248. ASME, New York, 1995b.Google Scholar
  7. I. Balberg, C.H. Anderson, S. Alexander, and N. Wagner. Excluded volume and its relation to the onset of percolation. Phys. Rev. B, 30:3933–3943, 1984.Google Scholar
  8. P.P. Bansal and A J. Ardell. Average nearest-neighbor distances between uniformly distributed finite particles. Metallography, 5:97–111, 1972.Google Scholar
  9. R.S. Bay and C. L. Tucker. Fibre orientation in simple injection mouldings. Part II: Experimental results. Polym. Engng. Sci., 32:240–253, 1992.Google Scholar
  10. M.L. Becraft and A.B. Metzner. The rheology, fiber orientation, and processing behavior of fiber-filled fluids. Rheol,, 36:143–174, 1992.Google Scholar
  11. LG. Berryman. Random close packing of hard spheres and disks. Phys. Rev. A, 27:1053–1061,1983.Google Scholar
  12. LG. Berryman. Measurement of spatial correlation functions using image processing techniques. J. Appl. Phys., 57:2374–2384, 1985.Google Scholar
  13. IG. Berryman and G.W. Milton. Microgeometry of random composites and porous media. J. Phys. D, 21:87–94, 1988.Google Scholar
  14. B. Billia, H. Jamgotchian, and H. Nguyen Thi. Statistical analysis of the disorder of two-dimensional cellular arrays in directional solidification. Metall. Trans. A, 22:3041–3050, 1991.Google Scholar
  15. B. Bochenek and R. Pyrz. Identification of clustered distributions. Submitted to Comp. Sci. Techn., 2003a.Google Scholar
  16. B. Bochenek and R. Pyrz. (2003). Reconstruction of random microstructures — a stochastic optimization problem. Submitted to Comput. Mat. Sci., 2003b.Google Scholar
  17. J. Boselli, P.D. Pitcher, P J. Gregson, and I. Sinclair. Random close packing of hard spheres and disks. J. Microsc., 195:104–112, 1999.Google Scholar
  18. N.J. Bozarth, J. Gillespie, and R.L. McCullough. Fiber orientation and its effect upon thermoelastic of short carbon fiber reinforced poly(etheretherketone). Polym. Compos., 8:74–81, 1987.Google Scholar
  19. J.R. Brockenbrough, W.H. Hunt, and O. Richmond. A reinforced material model using actual microstructural geometry. Scripta Metall. Mater., 27:385–390, 1992.Google Scholar
  20. LS. Chappel, T.A. Ring, and LD. Birchall. Particle-size distribution effects on sintering rates. J. Appl. Phys., 60:383–391, 1986.Google Scholar
  21. T. Chen, G.L Dvorak, and Y. Benveniste. Mori-Tanaka estimates of the overall elastic moduli of certain composite materials. J. Appl. Meek, 59:539–546, 1992.MATHGoogle Scholar
  22. S.N. Chiu. Aboav-Weaire’s and Lewis’ laws — A review. Mat. Char., 34:149–165, 1995.Google Scholar
  23. D.B. Corson. Correlation functions for predicting properties of heterogeneous materials. J. Appl. Phys., 45:3159–3170, 1974.Google Scholar
  24. C.W. Corti, P. Cotterill, and G.A. Fitzpatrick. The evolution of the interparticle spacing in dispersion alloys. Int. Metall. Rev., 19:77–88, 1974.Google Scholar
  25. L.M. Cruz-Orive and E.R. Weibel. Sampling designs for stereology. J. Microsc., 122:235–257, 1989Google Scholar
  26. D. Cule and S. Torquato. Generating random media from limited microstructural information via stochastic optimization. J. Appl. Phys., 86:3428–3437, 1999.Google Scholar
  27. A.C. Curtis, P.S. Hope, and I.M. Ward. Modulus development in oriented short-glass-fiber-reinforced polymer composites. Polymer Composites, 3:138–145, 1982.Google Scholar
  28. P.L Davy and F.L Guild. The distribution of interparticle distance and its application in finite-element modelling of composite materials. Proc. R. Soc. Lond. A, 418:95–112, 1988.Google Scholar
  29. B. Derby. Microstructure and fracture behavior of particle-reinforced metal-matrix composites. J. Microsc, 177:357–368, 1995.Google Scholar
  30. P.L Diggle, J. Besag, and LT. Gleaves. Statistical analysis of spatial point patterns by means of distance methods. Biometrics, 32:659–667, 1976.MATHGoogle Scholar
  31. P.L Diggle. Statistical Analysis of Spatial Point Pattern, Academic Press, London, 1983; p. 70.Google Scholar
  32. P. L Diggle and A. G. Chetwynd. Second-order analysis of spatial clustering for inhomogeneous populations. Biometrics, 47:1155–1163, 1999Google Scholar
  33. W.L Drugan and LR. Willis. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids, 44:497–524, 1996.MathSciNetMATHGoogle Scholar
  34. G.L Dvorak. Transformation field analysis of inelastic composite materials. Proc. R. Soc. Lond. A, 437:311–327,1992.MathSciNetMATHGoogle Scholar
  35. K.E. Evans and A.G. Gibson. Prediction of the maximum packing fraction achievable in randomly oriented short-fibre composites. Compos. Sci. Techn., 25:149–162, 1986.Google Scholar
  36. R.K. Everett and LH. Chu. Modeling of non-uniform composite microstructures. J. Comp. Mat., 27:1128 – 1144,1993.Google Scholar
  37. R.K. Everett. Quantification of random fiber arrangements using a radial distribution function approach. J. Comp. Mat., 30:748–758, 1996.Google Scholar
  38. J.J. Finney. Random packings and the structure of simple liquids. Proc. R. Soc. Lond. A, 319:479–493, 1970.Google Scholar
  39. G. Fischer and P. Eyerer. Measuring spatial orientation of short fibre reinforced thermoplastics by image analysis. Polym. Comp., 9:297–304, 1988.Google Scholar
  40. F. Folgar and C.L. Tucker. Orientation behavior of fibers in concentrated suspensions. J. Reinf. Plast. Comp., 3:98–119, 1984.Google Scholar
  41. P.S. From and R. Pyrz. Computer assisted stereology of short fibre composites: (I) determination of fibre length distribution. Sci. Engng. Comp. Mat., 8:143–157, 1999.Google Scholar
  42. A. Getis and B. Boots. Models of Spatial Processes. Cambridge University Press, Cambridge, 1978.MATHGoogle Scholar
  43. S. Ghosh, Z. Nowak, and K. Lee. Quantitative characterization and modeling of composite microstructures by Voronoi cells. Acta Mat, 45:2215–2234, 1997a.Google Scholar
  44. S. Ghosh, Z. Nowak, and K. Lee. Tesselation-based computational methods for the characterization and analysis of heterogeneous microstructures. Comp. Sci. Techn., 57:1187–1210, 1997b.Google Scholar
  45. S. Ghosh and S. Moorthy. Particle fracture simulation in non-uniform microstructures of metal-matrix composites. Acta Mat, 46:965–982, 1998.Google Scholar
  46. J.-F. Gouyet. Physics and Fractal Structures, Springer, New York, 1996.Google Scholar
  47. H.J.G. Gundersen and E.B. Jensen. The efficiency of systematic sampling in stereology and its prediction. J. Microsc, 147:229–263, 1987.Google Scholar
  48. H. J.G. Gundersen, E.B. Jensen, K. Kiêu, and J. Nielsen. The efficiency of systematic sampling in stereology reconsidered. J. Microsc., 193:199–211, 1999.Google Scholar
  49. A.A. Gusev. Representative volume element size for elastic composites: A numerical study. J. Mech. Phys. Solids, 45:1449–1459, 1997.MATHGoogle Scholar
  50. H. Hermann. Stochastic Models of Heterogeneous Materials, Trans Tech Publications, Zurich, 1991.Google Scholar
  51. J.R. Isasi, R. G. Alamo and L. A. Mandelkern. A study of the dilation of the unit cell of metallocene isotactic poly (propylenes): The monoclinic form. J. Polym. Sci. B, 35:2511–2522, 1997.Google Scholar
  52. W.C. Jackson, S.G. Advani, and C.L. Tucker. Predicting the orientation of short fibers in thin compression mouldings. J. Comp. Mat, 20:539–557, 1986.Google Scholar
  53. J.W. Ju and T.M. Chen. Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. J. Microsc 103:123–144, 1994.MathSciNetMATHGoogle Scholar
  54. J. W. Ju and K.H. Tseng. Effective elastoplastic behavior of two-phase ductile matrix composites: A micromechanical framework. Int. J. Solids Struct, 33:4267–4291, 1996.MATHGoogle Scholar
  55. L.M. Karlsson and A. Liljeberg. Second-order stereology for pores in translucent alumina studied by confocal scanning laser microscopy. J. Microsc, 175:186–194, 1994.Google Scholar
  56. P.A. Kamezis, G. Durrant, and B. Cantor. Characterization of reinforcement distribution in cast Al-alloy SiCp composites. Mat Char., 40:97–109, 1998.Google Scholar
  57. D. König, S. Carvajal-Gonzales, A.M. Downs, J. Vassy, and LP. Rigaut. Modelling and analysis of 3-D arrangements of particles by point processes with examples of application to biological data obtained by confocal scanning light microscopy. J. Microsc., 161:405–433, 1991.Google Scholar
  58. S. Kunz-Douglass, P. W. R. Beaumont, and M. F. Ashby. A model for the toughness of epoxy-mbber particulate composites. J. Mater. Set, 15:1109–1123, 1980.Google Scholar
  59. Y.W. Kwon and C.T. Liu. Effects o non-uniform particle distributions on damage evolution in pre-cracked particulate composite specimens. Polym. & Polym. Comp., 6:387–397, 1998.Google Scholar
  60. B.J. Lee and M.E. Mear. Effect of inclusion shape on the stiffness of non-linear two phase composites. J. Mech. Phys. Solids, 39:627–649, 1991.Google Scholar
  61. J. Lemaitre, A. Gervois, LP. Troadec, N. Rivier, M. Ammi, L. Oger, and D. Bideau. Arrangement of cells in Voronoi tessellations of monosize packing of disks. Phil. Mag. B, 67:347–362, 1993.Google Scholar
  62. H.W. Lotwick and B.W. Silverman. Methods for analyzing spatial processes of several types of points. J. Roy. Statist. Soc. B, 44:406–413, 1982.MathSciNetGoogle Scholar
  63. M. Manoharan, C. Liu, and L.L. Lewandowski. Microstructure and particle size effects on fracture in aluminum metal matrix composites. In K. Salama et al., editors, Advances in Fracture Research, pages 2977–2985. Pergamon Press, Oxford, 1989.Google Scholar
  64. T. Mattfeldt, H. Frey, and C. Rose. Second order stereology of benign and malignant alterations of the human mammary gland. J. Microsc., 171:143–151, 1993.Google Scholar
  65. M.N. Miller. Bounds for effective electrical, thermal, and magnetic properties of heterogeneous materials. J. Math. Phys., 10:1988–2004, 1969.Google Scholar
  66. S.J. Milne, M. Patel, and E. Dickinson. Experimental studies of particle packing and sintering behavior of monosize spherical silica powders. J. European Ceram. Soc, 11:1–7, 1993.Google Scholar
  67. G.W. Milton. Bounds on the elastic and transport properties of two-component composites. J. Mech. Phys. Solids, 30:177–191, 1982.MathSciNetMATHGoogle Scholar
  68. B. Moginger and P. Eyerer. Detennination of the weighting function g(βi,r,vf) for fibre orientation analysis of short fibre-reinforced composites. Composites, 22:39–4–399, 1991.Google Scholar
  69. T. Mura. Micromechanics of Defects in Solids. Kluwer, Dordrecht, 1987.Google Scholar
  70. Y. Nakamura S. Okabe, N. Yoshimoto, and T. Iida. Effect of particle shape on the mechanical properties of particle-filled PVC. Polym. &Polym. Comp., 6:407–14, 1998.Google Scholar
  71. Y. Nakamura, S. Okabe, and T. Iida, T. Effects of particle shape, size and interfacial adhesion on the fracture strength of silica-filled epoxy resin. Polym. & Polym. Comp., 7:177–186, 1999.Google Scholar
  72. S. Nemat-Nasser and M. Hori. Micromechanics: Overall Properties of Heterogeneous Materials, North- Holland, Amsterdam, 1993.MATHGoogle Scholar
  73. A.S. Nielsen and R. Pyrz. In-situ observation of thermal residual strains in carbon/thermoplastic micro- composites using Raman spectroscopy. Polym. & Polym. Comp., 5:245–257, 1997.Google Scholar
  74. A.S. Nielsen and R. Pyrz. Study of the influence of thermal history on the load transfer efficiency and fibe failure in carbon/polypropylene microcomposites using Raman spectroscopy. Composite Interfaces, 6:467–482, 1999.Google Scholar
  75. A.S. Nielsen and R. Pyrz. A novel approach to measure local strains in polymer matrix systems using polarized Raman microscopy. Comp. Sci. Techn., 62:2219–2227, 2002.Google Scholar
  76. A.S. Nielsen, D.N. Batchelder, and R. Pyrz. Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. J. Polymer, 43:2671–2676, 2001.Google Scholar
  77. H. Okumura and F. Yonezawa. New expression of the bulk viscosity. Physica A, 321:207–219, 2003.Google Scholar
  78. M. Ostoja-Starzewski, P.Y. Sheng, and I. Jasiuk. Influence of random geometry on effective properties and damage formation in composite materials. J. Engng. Mat. Tech., 116:384–391, 1994.Google Scholar
  79. P.G. Parkhouse and A. Kelly. The random packing of fibres in three dimensions. Proc. R. Soc. London A, 451:737–746, 1995.Google Scholar
  80. P. Ponte Castaneda and LR. Willis. The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids, 43:1919–1951, 1995.MathSciNetMATHGoogle Scholar
  81. M.L Powell. Computer-simulated random packing of spheres. Powder Techn., 25:45–52, 1980.Google Scholar
  82. R. Pyrz. Quantitative description of the microstructure of composites. Part I: Morphology of unidirectional composite systems. Comp. Sci. Techn., 50:197–208, 1994a.Google Scholar
  83. R. Pyrz. Correlation of microstructure variability and local stress field in two-phase materials. Mater. Sci. Engng. A, 177:253–259, 1994b.Google Scholar
  84. R. Pyrz and B. Bochenek. Statistical model of fracture in materials with disordered microstructure. Sci. Engng. Comp. Mat., 3:95–109, 1994.Google Scholar
  85. R. Pyrz. Pattern analysis and topological effects in transversely loaded unidirectional composites. In W. Tzuchizing and T.W. Chou, editors, Proceedings of the International Conference Progress in Advanced Materials and Mechanics, pages 581–586. Peking University Press, Beijing, 1996a.Google Scholar
  86. R. Pyrz. Disorder and fracture model for transversely loaded composite materials. In H. Nisitani et al., editors, Computer Aided Assessment and Control of Localized Damage, pages 385–392. Computational Mechanics Publications, Southhampton, 1996b.Google Scholar
  87. R. Pyrz. Fractal characterization of second phase dispersion in composite materials. Sci. Engng. Comp. Mat., 6:141–150, 1997a.Google Scholar
  88. R. Pyrz, Recent trends in morphological characterization of microstructures in polymer composites. In S/I/ Andersen et al., editors, Proceedings of the 18 th Rise International Symposium on Materials Science, page 81. Riso National Laboratory, Roskilde, 1997b.Google Scholar
  89. R. Pyrz and B. Bochenek. Topological disorder of microstmcture and its relation to the stress field. Int. J. Solids Struct., 35:2413–2427, 1998.MATHGoogle Scholar
  90. R. Pyrz. Application of X-ray microtomography to the study of polymer composites. In Proceedings of the 12 th International Conference on Composite Materials, paper no. 909. Paris, 1999.Google Scholar
  91. R. Pyrz. X-ray microtomography of composite materials. In S. Bandyopahyay et al., editors, Proc. ACUN- 3 International Conference on Technology Convergence in Composite Applications, pages 185–190. Sydney, 2001.Google Scholar
  92. R. Pyrz. Calculation of local stresses using molecular dynamic simulations. Submitted to Comp. Sci. Techn., 2003.Google Scholar
  93. J. Quintanilla. Microstmcture and properties of random heterogeneous materials: A review of theoretical results. Polym. Engng. Sci., 39:559–585, 1999.Google Scholar
  94. N. Rivier. Statistical crystallography. Structure of random cellular networks. Phil. Mag. B, 52:795–819, 1985.Google Scholar
  95. B.D. Ripley. Modelling spatial patterns. J. Roy. Statist. Soc. B, 39:172–212, 1977.MathSciNetGoogle Scholar
  96. K. Saito, S. Araki, and T. Nakamura. Stereological modeling and micromechanical analysis of rubber- particle reinforced epoxy composite materials. Mech. Comp. Mater., 32:317–329, 1996.Google Scholar
  97. K. Sandau and H. Kurz. Measuring fractal dimension and complexity — An alternative approach with an application.J. Microsc, 1997, 186, 164–176, 1997.Google Scholar
  98. A. Sasov and D. van Dyck. Desktop X-ray microscopy and microtomography. J. Microsc, 191, 151–158, 1998.Google Scholar
  99. J. Schjødt-Thomsen and R. Pyrz. Overall creep modelling of short fibre reinforced composites with weakened interfaces and complex fiber orientation distributions. Mech. Mater., 32:349–359, 2000.Google Scholar
  100. J. Schjødt-Thomsen and R. Pyrz. The influence of stochastic interfacial parameter distribution on the stiffness of composites with complex fiber orientation. Comp. Sci. Techn., 61:697–704,2001.Google Scholar
  101. J. Schjødt-Thomsen and R. Pyrz. Stress fields in heterogeneous solids with spatially dispersed inclusions. In R. Pyrz et al., editors, New Challenges in Mesomechanics, pages 75–82. Aalborg University, 2002.Google Scholar
  102. J. Serra. Image Analysis and Mathematical Morphology, Academic Press, London, 1982; p. 271.MATHGoogle Scholar
  103. R. Sibson. The Dirichlet tessellation as an aid in data analysis. Scand. J. Statist., 7:1.4–20, 1980.MathSciNetGoogle Scholar
  104. P. Soille and J.F. Rivest. On the validity of fractal dimension measurements in image analysis. J. Visual Comm. Image Represent., 7:217–229, 1996.Google Scholar
  105. W.A. Spitzig, J.F. Kelly, and O. Richmond. Quantitative characterization of second-phase populations. Metallography, 18:235–261, 1985.Google Scholar
  106. D. Srolovitz, T. Egami, and V. Vitek. Radial distribution function and structural relaxation in amorphous solids. Phys. Rev. B, 24:6936–6944,1981.Google Scholar
  107. D. Stauffer and A. Aharoni. Introduction to Percolation Theory. Taylor & Francis, Washington, 1992.Google Scholar
  108. J.H. Steele, A stereological analysis of ductile fracture by microvoid coalescence. In K. Salama et al., editors, Advances in Fracture Research, pages 3449–3456. Pergamon Press, Oxford, 1989.Google Scholar
  109. D. Stoyan. On correlations of marked point processes. Math. Nachr., 116:197–204, 1984.MathSciNetMATHGoogle Scholar
  110. B J. Super and A.C. Bovik. Localized measurement of image fractal dimension using Gabor filters. J. Visual Comm. Image Represent, 1991, 2, 114–128, 1991.Google Scholar
  111. Y. Takao, T.W. Chou, and M. Taya. Effective longitudinal Young’s modulus of misoriented short fiber composites. J. Appl. Mech., 49:536–540, 1982.MATHGoogle Scholar
  112. G.P. Tandon and G J. Weng. The effect of aspect ratio of inclusions on the elastic properties of unidirec-tionally aligned composites. Polymer Composites, 5:327–333, 1984.Google Scholar
  113. M. Taya, K. Muramatsu, DJ. Lloyd, and R. Watanabe. Determination of distribution patterns of fillers in composites by micromorphological parameters. JSME Int. J. I, 34:198–206, 1991.Google Scholar
  114. A. Tewari, M. Dighe, and A.M. Gokhale. Quantitative characterization of spatial arrangement of micropores in cast microstructures. Mat. Char., 40:119–132, 1998.Google Scholar
  115. S. Toll. (1998). Packing mechanics of fibre reinforcements. Polym. Engng. Sci., 38:1337–1350.Google Scholar
  116. S. Torquato. Microstructure characterization and bulk properties of disordered two-phase media. J. Stat. Phys., 45:843–873, 1986.MathSciNetGoogle Scholar
  117. S. Torquato. Random heterogeneous media: Microstructure and improved bounds on effective properties. Appl. Mech. Rev., 44:37–76, 1991.MathSciNetGoogle Scholar
  118. S. Torquato. Unified methodology to quantify the morphology and properties of inhomogeneous media. Physica A, 201:19–91, 1994.Google Scholar
  119. E.M. Tory, N.A. Cochrane, and S.R. Wadell. Anisotropy in simulated random packing of equal spheres. Nature, 220:1023–1024, 1968.Google Scholar
  120. W.M. Visscher and M. Bolsterli. Random packing of equal and unequal spheres in two and three dimensions. Nature, 239:504–507, 1972.Google Scholar
  121. Y.M. Wang and G.J. Weng. The influence of inclusion shape on the overall viscoelastic behavior of composites. J. Appl. Mech., 59:510–518, 1992.MATHGoogle Scholar
  122. D. Weaire and N. Rivier. Soap, cells and statistics — Random patterns in two dimensions. Contemp. Phys., 25:59–99, 1984.Google Scholar
  123. E.R. Weibel. Stereological Methods. Academic Press, London, 1980.Google Scholar
  124. K. Wiencek and D. Stoyan. Spatial correlations in metal structures and their analysis. Mat. Char., 31:47–53,1993.Google Scholar
  125. A.S. Wimolkiatisak, J.P. Bell, D.A. Scola, and J. Chang. Assessment of fiber arrangement and contiguity in composite materials by image analysis. Polym. Comp., 11:274–279, 1990.Google Scholar
  126. CL. Yeong and S. Torqato. Reconstructing random media. Phys.Rev. E, 57:495–506, 1998a.MathSciNetGoogle Scholar
  127. C. L. Yeong and S. Torqato. Reconstructing random media. II. Three-dimensional media from two-dimensional cuts. Phys.Rev. E, 58:224–233, 1998b.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Ryszard Pyrz
    • 1
  1. 1.Institute of Mechanical EngineeringAalborg UniversityAalborgDenmark

Personalised recommendations