Introduction to Crystal Plasticity Theory

  • Peter E. McHugh
Part of the International Centre for Mechanical Sciences book series (CISM, volume 464)


In this chapter an introduction to crystal plasticity theory is presented. The chapter includes brief reviews of continuum mechanics and the finite element method, necessary for the understanding of the theory. The theory itself is presented in detail and its implementation in the finite element method for solving problems is outlined. The chapter closes with a review of some case study applications.


Slip System Crystal Plasticity Reference Configuration Active Slip System Metal Matrix Composite Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


General Formulations

  1. A. Acharya. A model of crystal plasticity based on the theory of continuously distributed dislocations. J. Mech. Phys. Solids, 49:761–784, 2001.MATHGoogle Scholar
  2. A. Arsenlis and D.M. Parks. Modelling the evolution of crystallographic dislocation density in crystal plasticity. J. Mech. Phys. Solids, 50:1979–2009, 2002.MATHGoogle Scholar
  3. R.J. Asaro and LR. Rice. Strain localisation in ductile single crystals. J. Mech. Phys. Solids, 25:309–338, 1977.MATHGoogle Scholar
  4. R.J. Asaro. Crystal plasticity, J. Appl. Mech., 50:921–934, 1983.MATHGoogle Scholar
  5. R.J Asaro and A. Needleman. Texture development and strain hardening in rate dependent polycrystals, Actametall., 33:923–953, 1985.Google Scholar
  6. F. Barbe, L. Decker, D. Jeulin, and G. Cailletaud. Intergranular behaviour of polycrystaline aggregates. Parti: F.E. model. Int. J. Plasticity, 17:513–536, 2001MATHGoogle Scholar
  7. F. Barbe, L. Decker, D. Jeulin, and G. Cailletaud. Intergranular behaviour of polycrystaline aggregates. Part 2: Results. Int. J. Plasticity, 17:537–563, 2001.MATHGoogle Scholar
  8. A.M. Cuitino and M. Ortiz. Computational modelling of single crystals. Modell. Simul. Mater. Sci. Engng., 1:255–263,1992.Google Scholar
  9. H.E. Dève, S. Harren, C. McCullough and R.L Asaro. Micro and macroscopic aspects of shear band formation in internally nitrided single crystals of Fe-Ti-Mn alloys. Acta metall, 36:341–365, 1988.Google Scholar
  10. H.E. Dève and R.L Asaro. The development of plastic failure modes in crystalline materials: Shear Bands in fcc polycrystals. Metall. Trans. A, 20A:579–593, 1989.Google Scholar
  11. J. Harder. A Crystallographic model for the study of local deformation processes in polycrystals. Int. J. Plasticity, 15:605–624, 1999.MATHGoogle Scholar
  12. S.V. Harren, H.E. Dève, and R.J. Asaro. Shear band formation in plane strain compression. Acta metall, 36:2435–2480, 1988.Google Scholar
  13. S.V. Harren and R.J. Asaro. Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J. Mech. Phys. Solids, 37:191–232, 1989.MATHGoogle Scholar
  14. S.V. Harren, T.C. Lowe, R.J. Asaro, and A. Needleman. Analysis of large-strain shear in rate-dependant face-centred cubic polycrystals: Correlation of micro- and macromechanics. Phil. Trans. Royal Soc. London A, 328:443–500, 1989.MATHGoogle Scholar
  15. R. Hill. Generalised consultative Relations for incremental deformation of metal crystals by multislip. J. Meck Phys. Solids, 14:95–102, 1966.Google Scholar
  16. R. Hill and LR. Rice. Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Meek Phys. Solids, 20:401–413, 1972.MATHGoogle Scholar
  17. R. Hill and LR. Rice. Elastic potentials and the structure of inelastic constitutive laws. SIAM J. Appl. Math., 25:448–461, 1973.MathSciNetMATHGoogle Scholar
  18. HKS. ABAQUS Theory Manual Version 5.7. Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, RI, 1997a.Google Scholar
  19. HKS. ABAQUS Users Manuals Version 5.7. Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, RI, 1997b.Google Scholar
  20. J.W. Hutchinson. Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. Royal Soc. London, 348A:10l, 1976.Google Scholar
  21. Y.G. Huang. A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program. Harvard University Report MECH-178, 1991.Google Scholar
  22. T. Kameda and M.A. Zikry. Three dimensional dislocation-based crystalline constitutive formulation for ordered intermetallics. Scr. mater., 38:631–636, 1998.Google Scholar
  23. J. Lemonds, R.J. Asaro and A. Needleman. A numerical study of localised deformation in bi-crystals. Meek Mater., 4:417–435, 1985.Google Scholar
  24. L Mandel. Plasticité Classique et Viscoplasticité. CISM Lecture Notes, Springer, Berlin, 1972.MATHGoogle Scholar
  25. P.E. McHugh, RJ. Asaro, and C.F. Shih. Computational modelling of metal matrix composite materials — I. Isothermal deformation patterns in ideal microstiuctures. Acta metall. mater., 41:1461–1476, 1993a.Google Scholar
  26. P.E. Hugh, RJ. Asaro and CF. Shih. Computational modelling of metal matrix composite materials — II. Isothermal stress-strain behaviour. Acta metall. mater., 41:1477–1488, 1993b.Google Scholar
  27. P.E. McHugh, R. J. Asaro, and CF. Shih. Computational modelling of metal matrix composite materials — III. Comparisons with phenomenological models. Acta metall. mater., 41:1489–1499, 1993c.Google Scholar
  28. P.E. McHugh, R. J. Asaro, and CF. Shih. Computational modelling of metal matrix composite materials — IV. Thermal deformations. Acta metall. mater., 41:1501–1510, 1993d.Google Scholar
  29. L. Meric, P. Poubanne, and G. Cailletaud. Single crystal modelling for structural calculations: Part I — Model presentation, J. Engng. Mater. Techn., 113:162, 1991.Google Scholar
  30. L. Meric and G. Cailletaud. Single crystal modelling for structural calculations: Part II — Finite element implementation. J. Engn. Mater. Techn., 113:171, 1991.Google Scholar
  31. R. Mohan, M. Ortiz, and C.F. Shih. Mode mixity effects on crack tip deformation in ductile single crystals. Acta metall. mater., 40:1907–1922, 1990.Google Scholar
  32. A. Needleman. A continuum model for void nucleation by inclusion debonding. J. Appl. Meck, 54:525–531, 1987.MATHGoogle Scholar
  33. D. Peirce, R J. Asaro, and A. Needleman. An analysis of nonuniform and localised deformation in ductile single crystals. Acta metall, 30:1087–1119, 1982.Google Scholar
  34. D. Peirce, R J. Asaro, and A. Needleman. Material rate dependence and localised deformation in crystalline solids. Acta metall, 31:1951–1976, 1983.Google Scholar
  35. M.M. Rashid and S. Nemat-Nasser. A constitutive algorithm for rate-dependant crystal plasticity. Comput. Metk Appl. Meek Engng., 94:201–228, 1992.MATHGoogle Scholar
  36. J. R. Rice. Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity. J. Meck Phys. Solids, 19:433–455, 1971.MATHGoogle Scholar
  37. N J. Sorensen and B.S. Andersen. A parallel finite element method for the analysis of crystalline solids. Comput. Metk Appl. Meek Engng., 132:345–357, 1996.Google Scholar
  38. S. Suresh and A. Mortensen. Functionally graded metals and metal-ceramic composites: Part 2 Thermomechanical behaviour. Int. Mater. Rev., 42:85–116, 1997.Google Scholar
  39. L. Stainier, A.M. Cuitino, and M. Ortiz. A micromechanical model of hardening, rate sensitivity and thermal softening in BCC single crystals. J. Meek Phys. Solids, 50, 1511–1545, 2002.MATHGoogle Scholar
  40. G.I. Taylor. Plastic strain in metals. J. Inst. Metals, 62:307–324, 1938.Google Scholar
  41. C. Teodosiu and F. Sidoroff. A finite theory of the elastoviscoplasticity of single crystals. Int. J. Eng. Sci., 14:713–723, 1976.MATHGoogle Scholar
  42. C Teodosiu, J. L. Raphanel, and L. Tabourot. Finite element simulation of the large elastoplastic deformation of multicrystals. In C Teodosiu, LL. Raphanel and F. Sidoroff, editors, Large Plastic Deformations: Fundamental Aspects and Applications to Metal Forming, pages 153–168. Balkema, Rotterdam, 1993.Google Scholar
  43. G.Z. Voyiadjis and W. Huang. A modelling of single crystal plasticity with backstress evolution. Eur. J. Mech. A/Solids, 15:553–573, 1996.MATHGoogle Scholar
  44. X.P. Xu and A. Needleman. Void nucleation by inclusion debonding in crystal matrix. Modell. Simul. Mater. Sci. Engng, 1:111–132, 1993.Google Scholar
  45. O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method Fourth Edition Volume 2, Solid and Fluid Mechanics Dynamics and Non-Linearity. McGraw-Hill, London, 1991.Google Scholar

Rate Independent Methods

  1. L. Anand and M. Kothari. A computational procedure for rate-independent crystal plasticity. J. Mech. Phys. Solids, 44:525–558, 1996.MathSciNetMATHGoogle Scholar
  2. C. Miehe. Exponential map algorithm for stress updates in anisotropic multiplicative elastoplasticity for single crystals. Int. J. Num. Meth. Eng, 39:3367–3390, 1996.MATHGoogle Scholar
  3. J. Schröder and C. Miehe. Aspects of computational rate-independent crystal plasticity. Comput. Mater. Sci., 9:168–176, 1997.Google Scholar
  4. M. Schurig and A. Bertram. A rate independent approach to crystal plasticity with a power law, Comput. Mater. Sci., 26:154–158, 2003.Google Scholar

Strain Hardening

  1. A. Acharya and J.L. Bassani. Incompatible lattice deformations and crystal plasticity. In N. Ghoniem, editor, Plastic and Fracture Instabilities, AMD-Vol.200/MD-Vol.52, pages 75–80. ASME, New York, 1995.Google Scholar
  2. J.L. Bassani and T.Y. Wu. Latent Hardening in Single Crystals: Part II, Analytical Characterisation and Predictions. Univ. Pennsylvanya, 1989.Google Scholar
  3. J.L. Bassani. Single crystal hardening. Appl. Mech. Rev., 43:S320–S327, 1990.Google Scholar
  4. R. Estevez, G. Hoinard, and P. Franciosi. Hardening anisotropy of γ/γ’ superalloy single crystals — II. Numerical a nalysis of heterogeneity effects. Acta mater., 45:1567–1584, 1997.Google Scholar
  5. P. Franciosi, M. Berveiller, and A. Zaoui. Latent hardening in copper and aluminium single crystals. Acta metall, 28:273–283, 1980.Google Scholar
  6. P. Franciosi and A. Zaoui. Multislip in F.C.C. crystals — A theoretical approach compared with external data. Acta metall, 30:1627–1637, 1982.Google Scholar
  7. P. Franciosi. The concepts of latent hardening and strain hardening in metallic single crystals. Acta metall., 33:1601–1612, 1985.Google Scholar
  8. L. Lianes, J.L. Bassani, and C. Laird. Cyclic response of polycrystalline copper-composite-grain model. Acta metall. mater., 42:1279–1288, 1994.Google Scholar
  9. A. Mecif, B. Bacroix, and P. Franciosi. Temperature and orientation dependent plasticity features of Cu and Al single crystals under axial compression — I. Lattice rotation effects and true hardening stages. Acta mater., 45:371–381, 1997.Google Scholar
  10. M. Miller and P. Dawson. Influence of slip system hardening assumptions on modeling stress dependence of work hardening. J. Mech. Phys. Solids, 45:1781–1804, 1997.Google Scholar
  11. M. Ortiz. Plastic yielding as a phase transition. J. Appl. Mech., 66:289–298,1999.Google Scholar
  12. T.Y. Wu, J.L. Bassani, and C. Laird. Latent Hardening in Single Crystals: Part I, Experimental Characterisation. Univ. Pennsylvanya, 1989.Google Scholar
  13. Y. Zhou, K.W. Neale and L.S. Tóth. A modified model for simulating latent hardening during the plastic deformation of rate-dependent FCC polycrystals. Int. J. Plasticity, 9:961–978,1993.Google Scholar

Developments and General Applications

  1. W.M. Ashmawi and M.A. Zikry. Single void morphological and grain-boundary effects on overall Failure in FCC polycrystalline systems. Mater. Sci. Engng., A343:126–142, 2003.Google Scholar
  2. R. Becker, R.E. Smelser, and S. Panchanadeeswaran. Simulations of earing in highly textured materials. Comput. Meth. Mater. Processing, 39:47–60, 1992.Google Scholar
  3. R. Becker, R.E. Smelser, and S. Panchanadeeswaran. Simulations of earing in aluminium single crystals and polycrystals. Modell. Simul. Mater. Sci. Engng., 1:203–224, 1993.Google Scholar
  4. R. Becker and S. Panchanadeeswaran. Effects of grain interactions on deformation and local texture in polycrystals. Acta metall. mater., 43:2701–2719, 1995.Google Scholar
  5. R. Becker. Effects of strain localization on surface roughening during sheet forming. Acta mater., 46:1385–1401, 1998.Google Scholar
  6. M.S. Bruzzi, P.E. McHugh, F. O’Rourke, and T. Linder. Micromechanical modelling of the static and cyclic loading of an Al 2124-SiC MMC. Int. J. Plasticity, 17:565–599, 2001.MATHGoogle Scholar
  7. T.E. Buchheit, RJ. Bourcier, G.W. Wellman, and M.K. Neilsen. Capturing the influence of surface constraints in small and thin samples using polycrystalline plasticity theory. Modell. Simul. Mater. Sci. Engng., 5:421–437, 1997.Google Scholar
  8. S.H. Choi. Simulation of stored energy and orientation gradients in cold-rolled interstitial free steels. Acta mater., 51:1775–1788, 2003.Google Scholar
  9. H.H.M. Cleveringa, E. Van der Giessen, and A. Needleman. Comparison of discrete dislocation and continuum plasticity predictions for a composite material. Acta mater., 45:3163–3179, 1997.Google Scholar
  10. P. Connolly and P.E. McHugh. Fracture modelling of WC-Co hardmetals using crystal plasticity theory and the Gurson model. Fatigue Fract. Engng. Mater. Struct., 22:77–86, 1999.Google Scholar
  11. A.M. Cuitino and M. Ortiz. Three-dimensional crack-tip fields in four-point-bending copper single-crystal specimens. J. Mech. Phys. Solids, 44:863–904, 1996.Google Scholar
  12. M. Dao, P. Gu, A. Maewal, and R J. Asaro. A micromechanical study of residual stresses in functionally graded materials. Acta mater., 45:3265–3276, 1997.Google Scholar
  13. F. Delaire, J.L. Raphanel, and C. Rey. Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: Experimental study and finite element simulations. Acta mater., 48:1075–1087, 2000.Google Scholar
  14. O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud. Distribution of normal stress at grain boundaries in multicrystals: Application to an intergranular damage modelling. Comput. Mater. Sci., 25:77–84, 2002.Google Scholar
  15. F. Feyel, S. Calloch, D. Marquis, and G. Cailletaud. FE computation of a triaxial specimen using a polycrystalline model. Comput. Mater. Sci., 9:141–157, 1997.Google Scholar
  16. S. Forest, B. Barbe, and G. Cailletaud. Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int. J. Solids Struct., 37:7105–7126, 2000.MathSciNetMATHGoogle Scholar
  17. K. Gall, T. J. Lim, D.L. McDowell, H. Sehitoglu, and Y.I. Chumlyakov. The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi. Int. J. Plasticity, 16:1189–1214,2000.MATHGoogle Scholar
  18. M. Grujicic and Y. Zhang. Crystal plasticity analysis of the effect of dispersed ß-phase on deformation and fracture of laminar γ + α2 titanium aluminide. Mater. Sci. Engng., A265:285–300, 1999.Google Scholar
  19. J.A. Hines, K.S. Vecchio, and S. Ahzi. A model for microstructure evolution in adiabatic shear bands. Metall. Mater. Trans. A, 29A: 191–203, 1998.Google Scholar
  20. H.K. Kim and S.L. Oh. Finite element analysis of grain-by-grain deformation by crystal plasticity with couple stress. Int. J. Plasticity, 19:1245–1270, 2003.MathSciNetMATHGoogle Scholar
  21. J.W. Kysar. Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface. Part I: Experiments and crystal plasticity background. J. Mech. Phys. Solids, 49:1099–1128,2001a.MATHGoogle Scholar
  22. J.W. Kysar. Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface. Part II: Crack tip stress/deformation analysis. J. Mech. Phys. Solids, 49:1129–1153, 2001b.Google Scholar
  23. C.T. Lin, S.Y. Shen, R. Becker, and S. Suresh. Grain morphology, texture, and microhardness gradients in aluminum diffusion-bonded to aluminum oxide. Acta mater., 47:501–515, 1999.Google Scholar
  24. P.E. McHugh and P J. Connolly. Micromechanical modelling of ductile crack growth in the binder phase of WC-Co. Comput. Mater. Sci., 27:423–436, 2003.Google Scholar
  25. C. Miehe and L Schröder. A comparative study of stress update algorithms for rate-independent and rate- dependent crystal plasticity. Int. J. Numer. Meth. Engng, 50:273–298, 2001MATHGoogle Scholar
  26. A. Needleman, and V. Tvergaard. Comparison of crystal plasticity and isotropic hardening predictions for metal-matrix composites. J. Appl. Mech., 60:70–76, 1993.Google Scholar
  27. S. Nemat-Nasser and T. Okinaka. A new computational approach to crystal plasticity: FCC single crystal. Mech. Mater., 24:43–57, 1996.Google Scholar
  28. T. Ohashi. Numerical modelling of plastic multislip in metal crystals of f.c.c type. Phil. Mag. A, 70:793–803, 1994.Google Scholar
  29. T. Ohashi. Modelling and evaluation of plastic slip defonnation in metal microstructures. In S. Tanimura and A.S. Khan, editors, Dynamic Plasticity and Structural Behaviours, pages 301–304. Gordon and Breach, New York, 1995.Google Scholar
  30. T.L. O’Regan, D.F. Quinn, M.A. Howe, and P.E. McHugh. Void growth simulations in single crystals. Comput. Mech., 20:115–121, 1997.MATHGoogle Scholar
  31. V.C. Orsini and M.A. Zikry. Void growth and interaction in crystalline materials. Int. J. Plasticity, 17:1393–1417,2001.MATHGoogle Scholar
  32. G.P. Potimiche and S.R. Daniewicz. Analysis of tip plasticity for microstructurally small cracks using crystal plasticity theory. Engng. Frac. Mech., 70:1623–1643, 2003.Google Scholar
  33. G.L. Povirk, R. Mohan, and S.B. Brown. Crystal plasticity simulations of thermal stresses in thin-film aluminium interconnects. J. Appl. Phys., 77:598–606, 1995.Google Scholar
  34. S. Quilici and G. Cailletaud. FE simulation of macro-, meso- and micro-scales in polycrystalline plasticity. Comput. Mater. Sci., 16:383–390, 1999.Google Scholar
  35. D.F. Quinn, P. J. Connolly, M.A. Howe, and P.E. McHugh. Simulation of void growth in WC-Co hardmetals using crystal plasticity theory. Int. J. Mech. Sci., 39:173–183, 1997.Google Scholar
  36. E.A. Repetto and M. Ortiz. A micromechanical model of cyclic deformation and fatigue-crack nucleation in F.C.C. single crystals. Acta mater., 45:2577–2595, 1997.Google Scholar
  37. J. R. Rice and M. Saeedvafa. Crack tip singular fields in ductile crystals with Taylor power-law hardening. J. Mech Phys. Solids, 37, 673–691, 1989.MATHGoogle Scholar
  38. J. R. Rice, D.E. Hawk, and R.L Asaro. Crack tip fields in ductile crystals. Int. J. Fracture, 42:301–321, 1990.Google Scholar
  39. M.M. Rashid, G.T. Gray, and S. Nemat-Nasser. Heterogeneous deformations in copper single crystals at high and low strain rates. Phil. Mag. A, 65, 707–735, 1992.Google Scholar
  40. M. Saeedvafa. Domain of validity of HRR fields in ductile crystals. Mech. Mater., 19:73–88, 1994.Google Scholar
  41. P. Savage, B.P. O’Donnell, P.E. McHugh, B.P. Murphy, and D.F. Quinn. Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models. Ann. Biomed. Engng, 32:202–211, 2004.Google Scholar
  42. C. Schmitt, P. Lipinski, and M. Berveiller. Micromechanical modelling of the elastoplastic behavior of polycrystals containing precipitates — applications to hypo- and hyper-eutectoid steels. Int. J. Plasticity, 13:183–199, 1997.MATHGoogle Scholar
  43. A. Staroselsky and L. Anand. A constitutive model for HCP materials deforming by slip and twinning: application to magnesium alloy AZ31B. Int. J. Plasticity, 19:1843–1864, 2003.MATHGoogle Scholar
  44. P. Steinmann and E. Stein. On the numerical treatment and analysis of finite defonnation ductile single crystal plasticity. Comput. Methods. Appl. Mech. Engrg., 129:235–254, 1996.MATHGoogle Scholar
  45. C. Tsakmakis and A. Willuweit. A comparative study of kinematic hardening rules at finite deformations. Int. J. Non-Linear Mech., 39:539–554, 2003.Google Scholar
  46. P.D. Wu, K.W. Neale, and E. Van der Giessen. Simulation of the behaviour of FCC polycrystals during reversed torsion. Int. J. Plasticity, 12:1199–1219, 1996.MATHGoogle Scholar
  47. M.A. Zikry. Failure modes in cubic crystalline materials. Fatigue Fract. Aerospace Struct. Mater., 36:199–214, 1993.Google Scholar
  48. M.A. Zikry. An accurate and stable algorithm for high strain-rate finite strain plasticity. Comput. Struct., 50:337–350, 1994.MATHGoogle Scholar
  49. M.A. Zikry and M. Kao. Dislocation based multiple-slip crystalline constitutive formulation for finite- strain plasticity. Scr. mater., 34:1115–1121, 1996.Google Scholar
  50. M.A. Zykry and M. Kao. Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J. Mech. Phys. Solids, 44:1765–1798, 1996.Google Scholar
  51. M.A. Zikry and M. Kao. Inelastic microstructural failure modes in crystalline materials: The ∑33 A and ∑ 1l high angle grain boundaries. Int. J. Plasticity, 13:403–434, 1997.Google Scholar
  52. M.A. Zikry, M.R. Pothier, and J. N. Baucom. High strain-rate shear-strain localisation in FCC crystalline materials: A perturbation analysis. Int. J. Solids Struct., 37:6177–6202, 2000.MATHGoogle Scholar

Applications to Intermetallics

  1. R.A. Brockman. Analysis of elastic-plastic deformation in TiAl-polycrystals. Int. J. Plasticity, 19:1749–1772, 2003.MATHGoogle Scholar
  2. E.P. Busso and F.A. McClintock. A dislocation mechanics-based crystallographic model of a B2-type intermetallic alloy. Int. J. Plasticity, 12:1–28. 1996.Google Scholar
  3. M. Dao and R. J. Asaro. Non-Schmid effects and localised plastic flow in inteimetallic alloys. Mater. Sci. Engng., A170:143–160, 1993.Google Scholar
  4. M. Dao and RJ. Asaro. Coarse slip bands and the transition to macroscopic shear bands. Scr. metall. mater., 30:791–796, 1994.Google Scholar
  5. B.K. Kad, M. Dao, and R. J. Asaro. Numerical simulations of stress-strain behaviour in two-phase α2+γ lamellar TiAl alloys. Mater. Sci. Engng., A 192-A 193:97–193, 1994.Google Scholar
  6. B.K. Kad, M. Dao, and R. J. Asaro. Numerical simulations of tensile deformation behaviour in two-phase α2+γ lamellar TiAl alloys. Mat. Res. Soc. Symp. Proc, 364:169–174, 1995.Google Scholar
  7. E. Parteder, T. Siegmund, F.D. Fischer, and S. Schlögl. Numerical simulation of the plastic behaviour of polysynthetically twinned Ti-Al crystals. Mater. Sci. Engng., Vol. A192/193:149–154, 1995.Google Scholar
  8. S.M. Schlögl and F.D. Fischer. Micromechanical modelling of the deformation behaviour of polysynthetically twinned (PST) TiAl crystals. In Y.W. Kim, R. Wagner, and M. Yamaguchi, editors, Gamma Titanium Aluminides, pages 261–21 A. TMS, Warrendale, 1995.Google Scholar
  9. S.M. Schlögl and F.D. Fischer. Micromechanical modelling of TiAl intermetallics. Comput. Mater. Sci., 7:34–39, 1996.Google Scholar
  10. S.M. Schlögl and F.D. Fischer. The role of slip and twinning on the deformation behaviour of polysynthetically twinned (PST) crystals of TiAl — A micromechanical model. Phil. Mag. A, 75:631–636, 1996.Google Scholar

Applications to Superalloys

  1. D.W. MacLachlan, G.S.K. Gunturi, and D.M. Knowles. Modelling the uniaxial creep anisotropy of nickel base single crystal superalloys CMSX-4 and RR2000 at 1023 K using a slip system based finite element approach. Comput. Mater. Sci, 25:129–141, 2002.Google Scholar
  2. P.E. McHugh and R. Mohrmann. Modelling of creep in Ni Base superalloy using a single crystal plasticity model. Comput. Mater. Sci., 9:134–140, 1997.Google Scholar
  3. B. Fedelich. A microstructural model for the monotonie and the cyclic mechanical behaviour of single crystals of superalloys at high temperatures. Int. J. Plasticity, 18:1–49,2002.MATHGoogle Scholar
  4. L. Feng, K.S. Zhang, G. Zhang, and H.D. Yu. Anisotropic damage model under continuum slip crystal theory for single crystals. Int. J. Solids Struct., 39:5279–5293, 2002.MATHGoogle Scholar
  5. D. Nouailhas, LP. Culié, G. Cailletaud, and L. Méric. Finite element analysis of the stress-strain behaviour of single-crystal tubes. Eur. J. Mech. A/Solids, 14:137–154, 1995.MATHGoogle Scholar
  6. D. Nouailhas and G. Cailletaud. Tension-torsion behaviour of single-crystal superalloys: Experiment and finite element analysis. Int. J. Plasticity, 11:451–470, 1995.Google Scholar
  7. D. Nouailhas and G. Cailletaud. Multiaxial behaviour of Ni-base single crystals. In A. Pineau, G. Cailletaud, and T.C. Lindley, editors, Multiaxial Fatigue and Design, ESIS 21, pages 75–82. Mechanical Engineering Publications, London, 1996.Google Scholar
  8. D. Nouailhas and G. Cailletaud. Finite element analysis of the mechanical behaviour of two-phase single-crystal superalloys. Scr. mater., 34:565–571, 1996.Google Scholar
  9. D. Nouilhas and S. Lhuillier. On the micro-macro modelling of γ/γ’ single crystal behaviour. Comput. Mater. Sci, 9:177–187, 1997.Google Scholar

Strain Gradients

  1. A. Acharya, J.L. Bassani, and A. Beaudoin. Geometrically necessary dislocations, hardening and a simple gradient theory of crystal plasticity. Scr. mater., 48:167–172, 2003.Google Scholar
  2. A. Acharya and J.L. Bassani. Lattice incompatibility and a gradient theory of crystal plasticity. J. Mech. Phys. Solids, 48:1565–1595, 2000.MathSciNetMATHGoogle Scholar
  3. D. J. Baumann. A model of crystal plasticity containing a natural length scale. Mater. Sci. Engng. A309 – 310:406–110, 2001.Google Scholar
  4. J.L. Bassani. Incompatibility and a single gradient theory of plasticity. J. Mech. Phys. Solids, 49:1983–1996,2001.MATHGoogle Scholar
  5. E. Bittencourt, A. Needleman, M.E. Gurtin and E. Van der Giessen. A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J. Mech. Phys. Solids, 51:281–310, 2003.MathSciNetMATHGoogle Scholar
  6. E.P. Busso, F.T. Meissonnier and N.P. O’Dowd. Gradient-dependant deformation of two-phase single crystals. J. Mech. Phys. Solids, 48:2333–2361, 2000.MATHGoogle Scholar
  7. M.E. Gurtin. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids, 50:5–32, 2002.MathSciNetMATHGoogle Scholar
  8. N.A. Fleck and J.W. Hutchinson. Strain gradient plasticity. Adv. Appl. Mech., 33:295–361, 1997.Google Scholar
  9. F.T. Meissonnier, E.P. Busso, and N.P. O’Dowd. Finite element implementation of a generalised non-local rate dependant crystallography formulation for finite strains. Int. J. Plasticity, 17:601–640, 2001.MATHGoogle Scholar
  10. J.Y. Shu, N.A. Fleck, and W.E. King. Bi-crystals with strain gradient effects. Mat. Res. Soc. Symp. Proc, 458:295–300,1997.Google Scholar
  11. J.Y. Shu and N.A. Fleck. Strain gradient crystal plasticity: Size dependant deformation of bicrystals. J. Mech. Phys. Solids, 47:297–324, 1999.MATHGoogle Scholar
  12. B. Svendsen. Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations. J. Mech. Phys. Solids, 50:1297–1329, 2002.MathSciNetMATHGoogle Scholar

Related References

  1. S. Ahzi, B. J. Lee, and RJ. Asaro. Plasticity and anisotropy evolution in crystalline polymers, Mater. Sci. Engng, A189:35–44, 1994.Google Scholar
  2. R. Becker and L.A. Lalli. Texture evolution in channel-die compression — Part II: Effects of grains which shear. Textures and Microstructures, 14:145–150, 1991.Google Scholar
  3. A. Bertram and J. Olschewski. Anisotropic creep modelling of the single crystal superalloy SRR99, Comput. Mater. Sci., 5:12–16, 1996.Google Scholar
  4. P. Boisse, P. Ladeveze, M. Poss, and P. Rougee. A new large time increment algorithm for anisotropic plasticity, Int. J. Plasticity, 7:65–77, 1991MATHGoogle Scholar
  5. N. Bonfoh, A. Carmasol, and P. Lipinski. Modelling of intra-crystalline hardening of materials with particles. Int. J. Plasticity, 19:1167–1193, 2003.MATHGoogle Scholar
  6. G. Cailletaud, S. Forest, D. Jeulin, F. Feyel, I. Galliet, V. Mounoury, and S. Quilici. Some elements of microstructural mechanics. Comput. Mater. Sci, 27:351–374,2003.Google Scholar
  7. J.D. Clayton, and D.L. McDowell. A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int. J. Plasticity, 19:1401–1444, 2003.MATHGoogle Scholar
  8. J. Crépin, T. Bretheau, and D. Caldemaison. Cavity growth and rupture of ß-treated zirconium: A crystallographic model. Acta mater. 44:4927–4935, 1996.Google Scholar
  9. J. P. Dingli, A. Abdul-Latif, and K. Saanouni. Predictions of the complex cyclic behaviour of polycrystals using a self-consistent modelling. Int. J. Plasticity, 16:411–437, 2000.MATHGoogle Scholar
  10. L. Farrissey, M. Ludwig, P.E. McHugh and S. Schmauder. An atomistic study of void growth in single crystalline copper. Comput. Mater. Set, 18:102–117, 2000.Google Scholar
  11. N.A. Fleck. A crystal plasticity view of powder compaction. Acta metall mater., 43:3177–3184, 1995.MathSciNetGoogle Scholar
  12. K. Inal, P.D. Wu, and K.W. Neale. Simulation of earing in textured aluminum sheets, Int. J. Plasticity, 16:635–648,2000.MATHGoogle Scholar
  13. H. Kitagawa, A. Nakatani, and Y. Shibutani. Molecular dynamics study of crack processes associated with dislocation nucleated at the tip. Mater. Sci. Engng., A176:263–269, 1994.Google Scholar
  14. J. Knap and M. Ortiz. An analysis of the quasicontinuum method. J. Mech. Phys. Solids, 49:1899–1923, 2001.MATHGoogle Scholar
  15. K. Kowalczyk and W. Gambin. Model of plastic anisotropy evolution with texture dependent yield surface. Int. J. Plasticity, 20:19–54, 2004.MATHGoogle Scholar
  16. S. Li, E. Hoferlin, E. Van Bael, P. Van Houtte, and C. Teodosiu. Finite element modelling of plastic anisotropy induced by texture and strain-path change. Int. J. Plasticity 19:647–674, 2003.MATHGoogle Scholar
  17. M. Ortiz. Computational micromechanics. Comput. Mech., 18:321–338, 1996.MathSciNetMATHGoogle Scholar
  18. S. Panchanadeeswaran, R.D. Doherty and R. Becker. Direct observation of orientation change by channel die compression of polycrystalline aluminum — Use of a split sample. Acta mater. 44:1233–1262, 1996.Google Scholar
  19. D. Raabe. Modelling of texture evolution during rolling and compression deformation of intermetallic Ni3Al and NiAl polycrystals. Comput. Mater. Sci., 3:231–240, 1994.Google Scholar
  20. D. Raabe. Texture simulation for hot rolling of aluminium by use of a Taylor model considering grain interactions. Acta metall. mater. 43:1023–1028, 1995.Google Scholar
  21. D. Raabe and W. Mao. Experimental investigation and simulation of the evolution during rolling deformation of an intermetallic Fe-28% Al-2 at. % Cr poly crystal at elevated temperatures. Phil. Mag. A, 71:805–813,1995.Google Scholar
  22. D. Raabe. Modelling of active slip systems, Taylor factors and grain rotations during rolling and compression deformation of polycrystalline inteirnetallic Ll2 compounds. Acta metall. mater., 43:1531–1540, 1995.Google Scholar
  23. J.L. Raphanel and P. Van Houtte. Simulation of the rolling textures of BCC metals by means of the relaxed Taylor theory. Acta metall, 33:1481–1488, 1985.Google Scholar
  24. B.M. Schroter and D.L. McDowell. Measurment of déformation fields in polycrystaline OFHC copper. Int. J. Plasticity, 19:1355–1376, 2003.Google Scholar
  25. E.B. Tadmor, R. Phillips, and M. Ortiz. Hierarchical modeling in the mechanics of materials. Int. J. Solids Struct., 37:379–389, 2000.MathSciNetMATHGoogle Scholar
  26. L.S. Toth, J.J. Jonas, P. Gilormini, and B. Bacroix. Length changes during free end torsion: A rate sensitive analysis. Int. J. Plasticity, 6:83–108, 1990.Google Scholar
  27. E. Van Der Giessen. Micromechanical and thermodynamic aspects of the plastic spin. Int. J. Plasticity, 7:365–386, 1991.MATHGoogle Scholar
  28. E. Van der Giessen, V.S. Deshpande, H.H.M. Cleveringa, and A. Needleman. Discrete dislocation plasticity and crack tip fields in single crystals. J. Mech. Phys. Solids, 49:2133–2153, 2001.MATHGoogle Scholar
  29. A. Zaoui and J.J. Raphanel. On the nature of the intergranular accommodation in the modelling of elastoviscoplastic behaviour of polycrystalline aggregates. In C. Teodosiu, LL. Raphanel and F. Sidoroff, editors, Large Plastic Deformations: Fundamental Aspects and Applications to Metal Forming. Balkema, Rotterdam, 1993.Google Scholar
  30. Y. Zhou, J.J Jonas, and K.W. Neale. Behaviour of initial texture components during the plane strain drawing of F.C.C. sheet metals. Acta mater., 44:607–619, 1996.Google Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Peter E. McHugh
    • 1
  1. 1.Department of Mechanical and Biomedical Engineering and National Centre for Biomedical Engineering ScienceNational University of IrelandGalwayIreland

Personalised recommendations