Deformation and Damage in Particle-Reinforced Composites: Experiments and Models

  • Javier Llorca
Part of the International Centre for Mechanical Sciences book series (CISM, volume 464)


The optimization of the mechanical properties of composites requires a detailed simulation of the complex deformation and failure mechanisms which arise in these heterogeneous microstructures upon loading. It has been shown that damage in the form of particle fracture, interface decohesion or ductile matrix failure controls many important mechanical properties, and this has led to the development of micromechancial models which include damage. This article reviews the current progress in this area within the framework of the two leading simulation approaches: the homogeneization techniques and the finite element analysis of three-dimensional multiparticle unit cells. Although the simulation tools presented are general, they are focused on analysing the behavior of metal- or polymer-matrix composites reinforced with stiff and brittle ceramic particles.


Void Nucleation Void Coalescence Representative Volume Element Size Matrix Failure Break Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. Babout, E. Maire, J. Y. Buffiere, and R. Fougeres. Characterization by x-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites. Acta Materialia, 49:2055–2063, 2001.CrossRefGoogle Scholar
  2. G. Bao, J. W. Hutchinson, and R. M. McMeeking. Particle reinforcement of ductile matrices against plastic flow and creep. Acta Metallurgica et Materialia, 39:1871–1882, 1991.CrossRefGoogle Scholar
  3. Y. Benveniste. A new approach to the application of Mori- Tanaka’s theory in composite materials. Mechanics of Materials, 6:147–157, 1987.CrossRefGoogle Scholar
  4. M. Berveiller and A. Zaoui. An extension of the self-consistent scheme to plastically-flowing polycrystals. Journal of the Mechanics and Physics of Solids, 26:325–344, 1979.CrossRefGoogle Scholar
  5. H. Böhm and W. Han. Comparisons between three-dimensional and two-dimensional statistics-based unit cell models for particle- reinforced MMCs. Modeling and Simulation in Materials Science and Engineering, 9:47–65, 2001.CrossRefGoogle Scholar
  6. N. Bourgeois. Caractérisation et modélisation micromécanique du comportement et de l’endommagement d’un composite à matrice métallique: Al/SiC p. PhD Thesis, Ecole Centrale des Arts et Manufactures, Paris, 1994.Google Scholar
  7. Y. Brechet, J. D. Embury, S. Tao, and L. Luo. Damage initiation in metal matrix composites. Acta Metallurgica et Materialia, 39:1781–1786, 1991.CrossRefGoogle Scholar
  8. L. M. Brown and J. D. Embury. The initiation and growth of voids at second phase particles. In Proceedings of the Third International Conference on the Strength of Metals and Alloys, pages 164–168. Institute of Metals, London, 1973.Google Scholar
  9. J. Y. Buffiere, E. Maire, P. Cloetnes, G. Lormand, and R. Fougeres. Characterization of internal damage in a MMCp using X-ray synchotron phase contrast microtomography. Acta Materialia, 47:1613–1625, 1999.CrossRefGoogle Scholar
  10. W. J. Cantwell and A. C. Roulin-Moloney. Fractography and failure mechanisms of unfilled and particulate filled epoxy resins. In A.C. Roulin-Moloney, editor, Fractography and Failure Mechanisms of Polymers and Composites, pages 234–289. Elsevier, London, 1989.Google Scholar
  11. P. Ponte Castaneda and P. Suquet. Nonlinear composites. Advances in Applied Mechanics, 34:171–301, 1998.CrossRefGoogle Scholar
  12. T. Christman, A. Needleman, and S. Suresh. An experimental and numerical study of deformation in metal-ceramic composites. Acta Metallurgica, 37:3029–3050, 1989.CrossRefGoogle Scholar
  13. I. Doghri and A. Ouaar. Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms. International Journal of Solids and Structures, 40:1681–1712, 2003.CrossRefMATHGoogle Scholar
  14. T. J. Downes and J. E. King. The effect of SiC particle size on the fracture toughness of a MMC. In N. Hansen et al., editors, Metal-matrix Composites: Processing, Microstructure and Properties, pages 305–310, Riso National Laboratory, Roskilde, 1991.Google Scholar
  15. W. J. Drugan. Micromechanics-based variational estimates for a higher-order non-local constitutive equation and optimal choice of effective moduli of elastic composites. Journal of the Mechanics and Physics of Solids, 48:1359–1387, 2000.MathSciNetCrossRefMATHGoogle Scholar
  16. W. J. Drugan and J. R. Willis. A micromechanics-based nonlocal constitutive equation and estimates of the representative volume element size for elastic composites. Journal of the Mechanics and Physics of Solids, 44:497–524, 1996.MathSciNetCrossRefMATHGoogle Scholar
  17. A. Eckschlager, W. Han, and H. J. Böhm. A unit cell model for brittle fracture of particles embedded in a ductile matrix. Computational Materials Science, 25:85–91, 2002.CrossRefGoogle Scholar
  18. J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London, A252.376–396, 1957.MathSciNetGoogle Scholar
  19. R. Estevez, E. Maire, P. Franciosi, and D. S. Wilkinson. Effect of particle clustering on the strengthening versus damage rivalry in particulate reinforced elastic plastic materials: A 3-D analysis from a self-consistent modeling. European Journal of Mechanics A/Solids, 18:785–804, 1999.CrossRefMATHGoogle Scholar
  20. K. Friedrich and J. Karger-Kocsis. Fractography and failure mechanisms of unfilled and short fiber reinforced semi-crystalline thermoplastics. In A.C. Roulin-Moloney, editor, Fractography and Failure Mechanisms of Polymers and Composites, pages 437–494. Elsevier, London, 1989.Google Scholar
  21. J. Gammage. Damage in Heterogeneous Aluminium Alloys. PhD Thesis, McMaster University, Hamilton, 2002.Google Scholar
  22. C. Gonzalez and J. LLorca. Prediction of the tensile stress-strain curve and ductility in Al/SiC composites. Scripta Materialia, 35:91–97, 1996.CrossRefGoogle Scholar
  23. C. Gonzalez and J. LLorca. A self-consistent approach to the elasto-plastic behavior of two-phase materials including damage. Journal of the Mechanics and Physics of Solids, 48:675–692, 2000.CrossRefMATHGoogle Scholar
  24. C. Gonzalez and J. LLorca. An analysis of the effect of hydrostatic pressure on the tensile deformation of aluminum-matrix composites. Materials Science and Engineering A, 341:256–263, 2002.CrossRefGoogle Scholar
  25. S. H. Goods and L. M. Brown. The nucleation of cavities by plastic deformation. Acta Metallurgica, 27:1–15, 1979.CrossRefGoogle Scholar
  26. A. L. Gurson. Continuum theory of ductile rupture by continuum void nucleation and growth, part I: yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 99:2–15, 1977.CrossRefGoogle Scholar
  27. A. A. Gusev. Representative volume element size for elastic composites: a numerical study. Journal of the Mechanics and Physics of Solids, 45:1449–1459, 1997.CrossRefMATHGoogle Scholar
  28. M. J. Hadianfard, J. Healy, and Y.-W. Mai. Temperature effect on fracture behaviour of an alumina particulate-reinforced 6061 aluminium composite. Advanced Composite Materials, 1:93–113, 1994.Google Scholar
  29. R. Hill. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13:213–222, 1965.CrossRefGoogle Scholar
  30. W. H. Hunt, J. R. Brockenbrough, and P. E. Magnusen. An Al-Si-Mg composite model system: microstructural effects on deformation and damage evolution. Scripta Met-allurgica et Materialia, 25:15–20, 1991.CrossRefGoogle Scholar
  31. J. W. Hutchinson. Elastic-plastic behavior of polycrystalline metals and composites. Proceedings of the Royal Society of London, A319:247–272, 1970.CrossRefGoogle Scholar
  32. J. W. Ju and L. Z. Sun. Effective elastoplastic behaviour of metal-matrix composites containing randomly located aligned spheroidal inhomogeneities. International Journal of Solids and Structures, 38:183–225, 2001.CrossRefMATHGoogle Scholar
  33. M. T. Kiser, F. W. Zok, and D. S. Wilkinson. Plastic flow and fracture of a particulate metal-matrix composite. Acta Materialia, 44:3465–3476, 1996.CrossRefGoogle Scholar
  34. T. F. Klimowicz and K. S. Vecchio. The influence of the aging condition on the fracture toughness of alumina-reinforced aluminium composites. In P.K. Liaw and M. Gungor, editors, Fundamental Relationships Between Micro structure and Mechanical Properties of Metal-Matrix Composites, pages 255–267. TMS, Warrendale, 1990.Google Scholar
  35. E. Kröner. Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten der Einkristalle. Z. Physik, 151:504–518, 1958.CrossRefGoogle Scholar
  36. N. Laws and R. McLaughlin. The effect of fibre length on the overall moduli of composite materials. Journal of the Mechanics and Physics of Solids, 27:1–13, 1979.CrossRefMATHGoogle Scholar
  37. J. J. Lewandowski and P. Lowhaphandu. Effects of hydrostatic pressure on mechanical behaviour and deformation processing of materials. International Materials Review, 43:145–187, 1998.CrossRefGoogle Scholar
  38. C. A. Lewis and P. J. Withers. Weibull modelling of particle cracking in metal matrix composites. Acta Metallurgica et Materialia, 43:3685–3699, 1995.CrossRefGoogle Scholar
  39. D. S. Liu and J. J. Lewandowski. The effect of superposed hydrostatic pressure on deformation and fracture, part II: particulate reinforced 6061 Al composite. Metallurgical Transactions, 24A:609–615, 1993.CrossRefGoogle Scholar
  40. D. S. Liu, M. Manoharan, and J. J. Lewandowski. Effects of microstructure on the behavior of an Al alloy and an Al matrix composite tested under low levels of superimposed hydrostatic pressure. Metallurgical Transactions A, 20A:2409–2417, 1989.CrossRefGoogle Scholar
  41. J. LLorca. An analysis of the influence of reinforcement fracture on the strength of discontinuously-reinforced metal-matrix composite. Acta Metallurgica et Materialia, 43:181–192, 1995.Google Scholar
  42. J. LLorca and C. Gonzalez. Microstructural factors controlling the strength and ductility of particle-reinforced metal-matrix composites. Journal of the Mechanics and Physics of Solids, 46:1–5, 1998.CrossRefMATHGoogle Scholar
  43. J. LLorca, A. Martin, J. Ruiz, and M. Elices. Particulate fracture during deformation in a spray-formed metal-matrix composite. Metallurgical Transactions A, 24:1575–1588, 1993.CrossRefGoogle Scholar
  44. J. LLorca, A. Needleman, and S. Suresh. An analysis of the effects of matrix void growth on deformation and ductility in metal-ceramic composites. Acta Metallurgica et Materialia, 39:2317–2335, 1991.CrossRefGoogle Scholar
  45. J. LLorca and P. Poza. Influence of matrix strength on reinforcement fracture and ductility in AI/AI2O3 composites. Materials Science and Engineering, A185:25–37. 1993.Google Scholar
  46. J. LLorca and J. Segurado. Three-dimensional multiparticle cell simulations of deformation and damage in sphere-reinforced composites. Materials Science and Engineering A, 365:267–274, 2004.CrossRefGoogle Scholar
  47. D. J. LLoyd. Aspects of fracture in particulate reinforced metal matrix composites. Acta Metallurgica et Materialia, 39:59–71, 1991.CrossRefGoogle Scholar
  48. E. Maire, C. Verdu, G. Lormand, and R. Fougeres. Study of the damage mechanisms in an osprey Al alloy-SiCp composite by means of SEM in’situ tensile tests. Materials Science and Engineering A, A196:135–144, 1995.CrossRefGoogle Scholar
  49. E. Maire, D. S. Wilkinson, J. D. Embury, and R. Fougeres. Role of damage on the flow and fracture of particulate reinforced alloys and/ metalmatrix composites. Acta Materialia, 45:5261–5274, 1997.CrossRefGoogle Scholar
  50. M. Manoharan and J. J. Lewandowski. Crack initiation and growth toughness of an aluminum metal-matrix composite. Acta Metallurgica et Materialia, 38:489–496, 1991.CrossRefGoogle Scholar
  51. J. C. Michel, H. Moulinec, and P. Suquet. Effective properties of composite materials with periodic microstructure: a computational approach. Computational Methods in Applied Mechanical Engineering, 172:109–143, 1999.MathSciNetCrossRefMATHGoogle Scholar
  52. T. Mochida, M. Taya, and D. J. Lloyd. Fracture of particles in a particle/metal matrix composite under plastic straining and its effect on the Young’s modulus of the composite. Materials Transactions JIM, 32:931–942, 1991.Google Scholar
  53. T. Mochida, M. Taya, and M. Obata. Effect of damaged particles on the stiffness of a particle/metal matrix composite. JSME International Journal, 34:187–193, 1996.Google Scholar
  54. A. C. Moloney, H. H. Kausch, T. Kaiser, and H. R. Beer. Parameters determining the strength and toughness of particulate filled epoxide resins. Journal of Materials Science, 22:381–393, 1987.CrossRefGoogle Scholar
  55. T. Mori and K. Tanaka. Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica et Materialia, 21:571–574, 1973.CrossRefGoogle Scholar
  56. P. M. Mummery, P. Anderson, G. Davies, B. Derby, and J. Elliott. Damage assessment in particle-reinforced metal-matrix composites using x-ray microtomography. Scripta Metallurgica et Materialia, 29:1457–1462, 1993.CrossRefGoogle Scholar
  57. T. Mura. Micromechanics of Defects in Solids. Martinus Nijhoff Publishers, Dordrecht, 1987.CrossRefGoogle Scholar
  58. A. Needleman. A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, 54:525–531, 1987.CrossRefMATHGoogle Scholar
  59. S. R. Nutt and J. M. Duva. A failure mechanism in Al-Sic composites. Scripta Metal-lurgica et Materialia, 20:1055–1058, 1986.CrossRefGoogle Scholar
  60. S. R. Nutt and A. Needleman. Void nucleation at fiber ends in Al-SiC composites. Scripta Metallurgica et Materialia, 21:705–710, 1987.CrossRefGoogle Scholar
  61. H. E. Petermann, A. F. Planskensteiner, H. J. Böhm, and F. G. Rammerstorfer. A termo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental mori.tanaka approach. Computers and Structures, 71:197–214, 2002.CrossRefGoogle Scholar
  62. P. Poza and J. LLorca. Mechanical behaviour and failure micromechanisms of Al/Al2O3 composites under cyclic deformation. Metallurgical and Materials Transactions A, 26: 3131–3141, 1995.CrossRefGoogle Scholar
  63. P. Poza and J. LLorca. Fracture toughness and fracture mechanisms of Al/Al2O3 composites at cryogenic and elevated temperature. Materials Science and Engineering, A206:183–193, 1996.CrossRefGoogle Scholar
  64. P. Poza and J. LLorca. Mechanical behavior of Al-Li/SiC composites, part III: microme- chanical modeling. Metallurgical and Materials Transactions A, 30:869–878, 1999.Google Scholar
  65. J. Segurado, C. Gonzalez, and J. LLorca. A numerical investigation of the effect of particle clustering on the mechanical properties of composites. Acta Materialia, 51: 2355–2369, 2003.CrossRefGoogle Scholar
  66. J. Segurado and J. LLorca. A numerical approximation to the elastic properties of sphere- reinforced composites. Journal of the Mechanics and Physics of Solids, 50:2107–2121, 2002.CrossRefMATHGoogle Scholar
  67. J. Segurado and J. LLorca. A new three-dimensional interface finite element to simulate fracture in composites. International Journal of Solids and Structures, 41:2977–2993, 2004.CrossRefMATHGoogle Scholar
  68. J. Segurado, J. LLorca, and C. Gonzalez. On the accuracy of mean-field approaches to simulate the plastic deformation of composites. Scripta Materialia, 46:525–529, 2002.CrossRefGoogle Scholar
  69. P. M. Singh and J. J. Lewandowski. Effects of heat treatment and reinforcement size on reinforcement fracture during tension testing of a SiCp discontinuously reinforced aluminum alloy. Metallurgical and Materials Transactions A, 24A:2531–2543, 1993.CrossRefGoogle Scholar
  70. L. Z. Sun, J. W. Ju, and H. T. Liu. Elastoplastic modeling of metal matrix composites with evolutionary particle debonding. Mechanics of Materials, 35:559–569, 2003.CrossRefGoogle Scholar
  71. L. Z. Sun, H. T. Liu, and J. W. Ju. Effect of particle cracking on elastoplastic behaviour of metal matrix composites. International Journal for Numerical Methods in Engineering, 56:2183–2198, 2003.CrossRefMATHGoogle Scholar
  72. P. Suquet. Effective properties of nonlinear composites. In P. Suquet, editor, Continuum Micromechanics, pages 197–264, Springer-Ver lag, Vienna, 1997.Google Scholar
  73. G. P. Tandon and G. J. Weng. A theory of particle-reinforced plasticity. Journal of Applied Mechanics, 55:126–135, 1988.CrossRefGoogle Scholar
  74. P. F. Thomason. Ductile Fracture of Metals. Pergamon Press, 1990.Google Scholar
  75. K. Tohgo and T. W. Chou. Incremental theory of particulate-reinforced composite taking damage process into consideration, CCM report 91–45. University of Delaware, 1991.Google Scholar
  76. V. Tvergaard. Influence of voids on shear band instabilities under plane strain conditions. International Journal of Fracture, 17:389–407, 1981.CrossRefGoogle Scholar
  77. V. Tvergaard. On localization in ductile materials containing spherical voids. International Journal of Fracture, 18:237–252, 1982.Google Scholar
  78. V. Tvergaard. Effect of fibre debonding in a whisker-reinforced metal. Materials Science and Engineering A, A125:203–213, 1990.CrossRefGoogle Scholar
  79. V. Tvergaard. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites. Acta Materialia, 46:3637–3648, 1998.CrossRefGoogle Scholar
  80. V. Tvergaard and A. Needleman. Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, 32:157–169, 1984.CrossRefGoogle Scholar
  81. R. H. Van Stone, T. B. Cox, J. R. Low, and J. A. Psioda. Microstructural aspects of fracture by dimple rupture. International Metals Reviews, 30:157–179, 1985.Google Scholar
  82. K. Wallin, T. Saario, and K. Törrönen. Fracture of brittle particles in a ductile matrix. International Journal of Fracture, 32:201–209, 1987.CrossRefGoogle Scholar
  83. W. Weibull. A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18:293–299, 1951.MATHGoogle Scholar
  84. A. F. Whitehouse and T. W. Clyne. Cavity formation during tensile straining of particulate and short fiber metal matrix composites. Acta Metallurgica et Materialia, 41: 1701–1711, 1993.CrossRefGoogle Scholar
  85. D. Zhao, F. R. Tuler, and D. J. Lloyd. Fracture at elevated temperatures in a particle reinforced composite. Acta Metallurgica et Materialia, 42:2525–2533, 1994.CrossRefGoogle Scholar
  86. Y. H. Zhao and G. J. Weng. Plasticity of a two-phase composite with partially debonded inclusions. International Journal of Plasticity, 12:781–804, 1996.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Javier Llorca
    • 1
  1. 1.Department of Materials SciencePolytechnic University of MadridMadridSpain

Personalised recommendations