Modeling the Mechanical Behavior of Short Fiber Reinforced Composites

  • Helmut J. Böhm
Part of the International Centre for Mechanical Sciences book series (CISM, volume 464)


A discussion of selected modeling approaches for studying the mechanical and thermal expansion behavior of short fiber reinforced composites is given, the emphasis being put on mean field and unit cell models. Aligned and randomly oriented reinforcement geometries as well as more general fiber orientations described via orientation distribution functions are addressed.


Fiber Volume Fraction Short Fiber Maximum Principal Stress Orientation Distribution Function Unit Cell Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S.G. Advani and C.L. Tucker. The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol., 31:751–784, 1987.CrossRefGoogle Scholar
  2. D.H. Allen and J.W. Lee. The effective thermoelastic properties of whisker-reinforced composites as functions of material forming parameters. In G.J. Weng, M. Taya, and H. Abé, editors, Micromechanics and Inhomogeneity, pages 17–40, New York, NY, 1990. Springer-Verlag.CrossRefGoogle Scholar
  3. P.K. Banerjee and D.P. Henry. Elastic analysis of three-dimensional solids with fiber inclusions by BEM. Int. J. Sol. Struct, 29:2423–2440, 1992.CrossRefMATHGoogle Scholar
  4. Y. Benveniste. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater., 6:147–157, 1987.CrossRefGoogle Scholar
  5. Y. Benveniste, G.J. Dvorak, and T. Chen. On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. J. Mech. Phys. Sol., 39:927–946, 1991.MathSciNetCrossRefMATHGoogle Scholar
  6. J.G. Berryman. Long-wavelength propagation in composite elastic media, II. Ellipsoidal inclusions. J. Acoust. Soc. Amer., 68:1820–1831, 1980.CrossRefMATHGoogle Scholar
  7. A. Bhattacharyya and G.J. Weng. Plasticity of isotropic composites with randomly oriented packeted inclusions. Int. J. Plast., 10:553–578, 1994.CrossRefMATHGoogle Scholar
  8. H.J. Böhm. A short introduction to continuum micromechanics. This volume, pages 1–40, 2004.Google Scholar
  9. H.J. Böhm, A. Eckschlager, and W. Han. Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput. Mater. Sci., 25:42–53, 2002.CrossRefGoogle Scholar
  10. H.J. Böhm, W. Han, and A. Eckschlager. Multi-inclusion unit cell studies of reinforcement stresses and particle failure in discontinuously reinforced ductile matrix composites. Comput. Model. Engng. Sci., 5:5–20, 2004.MATHGoogle Scholar
  11. H.J. Böhm, F.G. Rammerstorfer, and E. Weissenbek. Some simple models for micromechanical investigations of fiber arrangement effects in MMCs. Comput. Mater. Sci., 1: 177–194, 1993.CrossRefGoogle Scholar
  12. M. Bornert. Homogénéisation des milieux aléatoires: bornes et estimations. In M. Bornert, T. Bretheau, and P. Gilormini, editors, Homogénéisation en mécanique des materiaux 1. Matériaux aléatoires élastiques et milieux périodiques, pages 133–221, Paris, 2001. Editions Hermès.Google Scholar
  13. A.R. Clarke, G. Archenhold, and N.C. Davidson. A novel technique for determining the 3d spatial distribution of glass fibres in polymer composites. Compos. Sci. Technol., 55:75–91, 1995.CrossRefGoogle Scholar
  14. B. Clyne and P.J. Withers. An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge, 1993.CrossRefGoogle Scholar
  15. W.M.G. Courage and P.J.G Schreurs. Effective material parameters for composites with randomly oriented short fibers. Comput. Struct., 44:1179–1185, 1992.CrossRefGoogle Scholar
  16. H.L. Cox. The elasticity and strength of paper and other fibrous materials. Brit. J. Appl. Phys., 3:72–79, 1952.CrossRefGoogle Scholar
  17. S.K. De and J.R. White, editors. Short Fibre-Polymer Composites. Woodhead Publishing, Cambridge, 1996.Google Scholar
  18. M.L. Dunn and H. Ledbetter. Elastic-plastic behavior of textured short-fiber composites. Acta mater., 45:3327–3340, 1997.CrossRefGoogle Scholar
  19. D. Duschlbauer. Computational Simulation of the Thermal Conductivity of MMCs Under Consideration of the Inclusion-Matrix Interface. PhD thesis, TU Wien, Vienna, Austria, 2003.Google Scholar
  20. D. Duschlbauer, H.E. Pettermann, and H.J. Böhm. Mori-Tanaka based evaluation of inclusion stresses in composites with nonaligned reinforcements. Scr. mater., 48:223–228, 2003.CrossRefGoogle Scholar
  21. R.F. Eduljee and R.L. McCullough. Elastic properties of composites. In R.W. Cahn, P. Haasen, and E.J. Kramer, editors, Materials Science and Technology Vol.13: Structure and Properties of Composites, pages 381–474, Weinheim, 1993. VCH.Google Scholar
  22. M. Ferrari. Asymmetry and the high concentration limit of the Mori-Tanaka effective medium theory. Mech. Mater., 11:251–256, 1991.CrossRefGoogle Scholar
  23. S.Y. Fu and B. Lauke. An analytical characterization of the anisotropy of the elastic modulus of misaligned short-fiber-reinforced polymers. Compos. Sci. Technol., 58: 1961–1972, 1998.CrossRefGoogle Scholar
  24. H. Fukuda and T.W. Chou. A probabilistic theory of the strength of short-fibre composites with variable fibre length and orientation. J. Mater. Sci., 17:1003–1007, 1982.CrossRefGoogle Scholar
  25. H. Fukuda and K. Kawata. On Young’s modulus of short fiber composites. Fibre Sci. Technol., 7:207–222, 1974.CrossRefGoogle Scholar
  26. H. Fukuda and Y. Takao. Thermoelastic properties of discontinuous fiber composites. In Kelly A. and Zwebern C, editors, Comprehensive Composite Materials, Vol.1, pages 377–401, Oxford, 2000. Pergamon Press.CrossRefGoogle Scholar
  27. A.A. Gusev, M. Heggli, H.R. Lusti, and P.J. Hine. Orientation averaging for stiffness and thermal expansion of short fiber composites. Adv. Engng. Mater., 4:931–933, 2002a.CrossRefGoogle Scholar
  28. A.A. Gusev, H.R. Lusti, and P.J. Hine. Stiffness and thermal expansion of short fiber composites with fully aligned fibers. Adv. Engng. Mater., 4:927–931, 2002b.CrossRefGoogle Scholar
  29. J.C. Halpin and N.J. Pagano. The laminate approximation for randomly oriented fibrous composites. J. Compos. Mater., 3:720–724, 1969.Google Scholar
  30. J.C. Halpin and S.W. Tsai. Effects of environmental factors on composite materials. Technical Report AFML-TR-67–423, Wright-Patterson AFB, Dayton, OH, 1969.Google Scholar
  31. Z. Hashin and S. Shtrikman. A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Sol, 11:127–140, 1963.MathSciNetCrossRefMATHGoogle Scholar
  32. R. Hill. A self-consistent mechanics of composite materials. J. Mech. Phys. Sol, 13: 213–222, 1965.CrossRefGoogle Scholar
  33. G.K. Hu. A method of plasticity for general aligned spheroidal void or fiber-reinforced composites. Int. J. Plast., 12:439–449, 1996.CrossRefMATHGoogle Scholar
  34. J.H. Huang. Some closed-form solutions for effective moduli of composites containing randomly oriented short fibers. Mater. Sci. Engng., A315:11–20, 2001.CrossRefGoogle Scholar
  35. M.S. Ingber and T.D. Papathanasiou. A parallel-supercomputing investigation of the stiffness of aligned short-fiber-reinforced composites using the boundary element method. Int. J. Num. Meth. Engng., 40:3477–3491, 1997.CrossRefGoogle Scholar
  36. K. Jayaraman and M.T. Kortschot. Correction to the Fukuda-Kawata Young’s modulus theory and the Fukuda-Chou strength theory for short fibre-reinforced composite materials. J. Mater. Sci., 31:2059–2064, 1996.CrossRefGoogle Scholar
  37. J.W. Ju and L.Z. Sun. Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I: Micromechanics-based formulation. Int. J. Sol. Struct., 38:183–201, 2001.CrossRefMATHGoogle Scholar
  38. G. Korb, W. Buchgraber, and T. Schubert. Thermophysical porperties and microstructure of short carbon fibre reinforced Cu-matrix composites made by electroless copper coating or powder metallurgical route respectively. In Twenty-Second IEE/CPMT International Electronics Manufacturing Technology Symposium, pages 98–103, New York, 1998. IEEE.Google Scholar
  39. G.T. Kuster and M.N. Toksöz. Velocity and attenuation of seismic waves in two-phase media: I. Theoretical formulation. Geophysics, 39:587–606, 1974.CrossRefGoogle Scholar
  40. H.K. Lee and S. Simunovic. Modeling of progressive damage in aligned and randomly oriented discontinuous fiber polymer matrix composites. Composites B, 31B:77–86, 2000.CrossRefGoogle Scholar
  41. A. Levy and J.M. Papazian. Elastoplastic finite element analysis of short-fiber-reinforced SiC/Al composites: Effects of thermal treatment. Acta metall. mater., 39:2255–2266, 1991.CrossRefGoogle Scholar
  42. H.R. Lusti, P.J. Hine, and A.A. Gusev. Direct numerical predictions for the elastic and thermoelastic properties of short fibre composites. Compos. Sci. Technol., 62: 1927–1934, 2002.CrossRefGoogle Scholar
  43. B. Mlekusch. Thermoelastic properties of short-fibre-reinforced thermoplastics. Compos. Sci. Technol., 59:911–923, 1998.CrossRefGoogle Scholar
  44. M. Narkis, A. Vaxman, A. Siegmann, and S. Kenig. Short-fiber thermoplastic composites: Fiber fracture during melt processing. In S.M. Lee, editor, International Encyclopedia of Composites, Vol.5, pages 141–155, New York, NY, 1991. VCH Publishers.Google Scholar
  45. S.R. Nutt and A. Needleman. Void nucleation at fiber ends in Al-SiC composites. Scr. metall, 21:705–710, 1987.CrossRefGoogle Scholar
  46. H.E. Pettermann, H.J. Böhm, and F.G. Rammerstorfer. Some direction dependent properties of matrix-inclusion type composites with given reinforcement orientation distributions. Composites B, 28B:253–265, 1997.CrossRefGoogle Scholar
  47. H.E. Pettermann, A.F. Plankensteiner, H.J. Böhm, and F.G. Rammerstorfer. A thermo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental Mori-Tanaka approach. Comput. Struct., 71:197–214, 1999.CrossRefGoogle Scholar
  48. P. Ponte Castafieda and J.R. Willis. The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Sol., 43:1919–1951, 1995.CrossRefGoogle Scholar
  49. G.L. Povirk, A. Needleman, and S.R. Nutt. An analysis of the effect of residual stresses on deformation and damage mechanisms in Al-SiC composites. Mater. Sci. Engng., A132:31–38, 1991.CrossRefGoogle Scholar
  50. R. Pyrz. Microstructural description of composites, statistical methods. This volume, pages 173–234, 2004.Google Scholar
  51. B.W. Rosen. Mechanics of composite strengthening. In B.W. Rosen, editor, Fiber Composite Materials, pages 37–75, Metals Park, OH, 1965. American Society of Metals.Google Scholar
  52. T. Siegmund, R. Cipra, J. Liakus, B. Wang, M. LaForest, and A. Fatz. Processingmicrostructure-property relationships in short fiber reinforced carbon-carbon composite system. This volume, pages 235–258, 2004.Google Scholar
  53. N.J. Sørensen. A planar type analysis for the elastic-plastic behaviour of continuous fibre-reinforced metal-matrix composites under longitudinal shearing and combined loading. DCAMM Report No.418, Technical University of Denmark, Lyngby, Denmark, 1991.Google Scholar
  54. C.L. Tucker and E. Liang. Stiffness predictions for unidirectional short-fiber composites: Review and evaluation. Compos. Sci. Technol., 59:655–671, 1999.CrossRefGoogle Scholar
  55. V. Tvergaard. Analysis of tensile properties for a whisker-reinforced metal-matrix composite. Acta metall. mater., 38:185–194, 1990.CrossRefGoogle Scholar
  56. V. Tvergaard. Three-dimensional analysis of ductile failure in metal reinforced by staggered fibers. Modell. Simul. Mater. Sci. Engng., 9:143–155, 2001.CrossRefGoogle Scholar
  57. V. Tvergaard. Breakage and debonding of short brittle fibres among particulates in a metal matrix. Mater. Sei. Engng., A369:192–200, 2004.CrossRefGoogle Scholar
  58. E. Weißenbek and F.G. Rammerstorfer. Influence of the fiber arrangement on the mechanical and thermo-mechanical behavior of short-fiber reinforced MMCs. Acta metall. mater., 41:2833–2843, 1993.CrossRefGoogle Scholar
  59. G.J. Weng. Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. Int. J. Engng. Sci., 30:83–92, 1992.CrossRefMATHGoogle Scholar
  60. J.R. Willis. Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J. Mech. Phys. Sol, 25:185–202, 1977.CrossRefMATHGoogle Scholar
  61. T.T Wu. The effect of inclusion shape on the elastic moduli of a two-phase material. Int. J. Sol. Struct, 2:1–8, 1966.CrossRefGoogle Scholar
  62. C. Zhou, W. Yang, and D. Fang. Damage of short-fiber reinforced metal matrix composites considering cooling and thermal cycling. J. Engng. Mater. Technol., 122:203–208, 2000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Helmut J. Böhm
    • 1
  1. 1.Institute of Lightweight Design and Structural BiomechanicsVienna University of TechnologyViennaAustria

Personalised recommendations