Advertisement

Technological Aspects of Walking

  • Friedrich Pfeiffer
Part of the International Centre for Mechanical Sciences book series (CISM, volume 467)

Abstract

Walking is one typical result of biological evolution. Walking biological systems do not need any prepared areas like roads, places or tracks; they are able to cope with most of the surface structures developed on earth. But walking needs intelligence, some neurobiologists say it is intelligence. All biological cognitive systems have learned from walking and are at the same time a basis for walking performance. The interconnection of sensors, muscles, cordal spine and brain intelligence are extremely complicated and not yet completely understood in all details. Here, biological evolution has developed very perfect and sophisticated solutions, which are able to adapt to most problems appearing in natural walking requirements. We shall hear about these findings in the lectures given by our biological colleagues.

Keywords

Humanoid Robot Gait Pattern Joint Torque Technological Aspect Biped Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. H. Cruse. The function of the legs in the free walking stick insect, Carausius Morosus. Journal of Comparative Physiology, p. 112, 1976.Google Scholar
  2. J. Eltze. Biologisch orientierte Entwicklung einer sechsbeinigen Laufmaschine. Fortschrittberichte VDI, Reihe 17, Nr. 110, VDI-Verlag, Düsseldorf, 1994.Google Scholar
  3. R. D. Galway. A Comparison of Methods for Calibration and Use of Multi-Component Strain Gauge Wind Tunnel Balances, Aeronautical Report LR-600, National Research Council Canada, Ottawa, March 1980.Google Scholar
  4. M. Gienger, K. Löffler and F. Pfeiffer. A Biped Robot that Joggs, Proceedings of the 2000 Int. Coraf. on Robotics and Automation, San Francisco, USA, pp. 3334–3339, 2000.Google Scholar
  5. M. Gienger, K. Löffler and F. Pfeiffer. Towards the Design of a Biped Jogging Robot, Proc. of the 2001 Int. Conf. on Robotics and Automation, Seoul, Korea, pp. 4140–4145, 2001.Google Scholar
  6. M. Gienger, K. Löffler and F. Pfeiffer. Design and Sensor System of a Biped Robot, In Proc. of the 4th Int. Conf. on Climbing and Walking Robots (CLAWAR), Karlsruhe, Germany, pp. 205–212, September 24–26, 2001.Google Scholar
  7. U. Hahn. Calculation of Anthropometric Data for Human Body Segments, Implemented in Software Program. Hahn. Calculation of Anthropometric Data for Human Body Segments, Implemented in Software Program “Calcman3d”, 1994.Google Scholar
  8. K. Hirai, M. Hirosea and T. Takenaka. The Development of Honda Humanoid Robot, Proc. of the 1998 IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, pp. 1321–1326, May 1998.Google Scholar
  9. J.J. Kuffner, S. Kagami, H. Inoue and M. Inaga. Dynamically Stable Motion Planning for Humanoid Robots. Autonomous Robots, Vol. 12, pp. 105–118, 2002.CrossRefMATHGoogle Scholar
  10. K. Löffler M. Gienger and F. Pfeiffer. Control of a Biped Jogging Robot. Proc. of the 6th Int. Workshop on Advanced Motion Control, Nagoya, Japan, pp. 307–323, 2000.Google Scholar
  11. K. Löffler, M. Gienger and F. Pfeiffer. Trajectory Control of a Biped Robot. Proc. of the 5th Int. Conf. on Climbing and Walking Robots (CLAWAR), Paris, pp. 437–444, 2002.Google Scholar
  12. K. Nishiwaki, T. Sugihara, S. Kagami, M. Inaba and H. Inoue. Online Mixture and Connection of Basic Motion for Humanoid Walking Control by Footprint Specification, Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, 2001.Google Scholar
  13. W. Neubauer. Locomotion with Articulated Legs in Pipes or Ducts. Proc. of the Int. Conf. on Intelligent Autonomous Systems, pp. 64–71, Pittsbourgh, USA, 1995.Google Scholar
  14. F. Pfeiffer and H. Cruse. Bionik des Laufens–technische Umsetzung biologischen Wissens. Konstruktion, Nr. 46, pp. 261–266, 1994.Google Scholar
  15. F. Pfeiffer, J. Eltze and H.-J. Weidemann. The TUM-Walking Machine, Intelligent Automation and Soft Computing, 1, pp. 307–323, 1995.CrossRefGoogle Scholar
  16. F. Pfeiffer, Th. Roßmann and J. Steuer. Theory and Practice of Machine Walking. In CISM-Course No. 375 (Human and Machine Locomotion), ed. Morecki, Waldron, pp. 231–281, Springer Verlag Wien, New York, 1999.Google Scholar
  17. F. Pfeiffer and J. Steuer. Design of Walking Machines-Control Aspects. 14th Triennal World Congress, Bejing, P.R. China, pp. 413–418, 1999.Google Scholar
  18. F. Pfeiffer. The Logic of Walking Machine Control, IFAC-Workshop on “Modelling and Analysis of Logic Controlled Dynamic Systems”, Irkutsk, 2002.Google Scholar
  19. F. Pfeiffer, K. Löffler and M. Gienger. The Concept of Jogging Johnnie. In Proc. 2002 IEEE Int. Conference on Robotics and Automation, Washington D.C., USA, pp. 3129–3135, 2002.Google Scholar
  20. M.H. Raibert. Legged Robots that Balance, MIT Press, Cambridge, 1986.Google Scholar
  21. R. Regele, W. Bott and P. Levi, Pro Robot - Predictions for the future development of humanoid robots, EU-Studies, FZI Karlsruhe, 2003.Google Scholar
  22. Th. Roßmann and F. Pfeiffer. Control and Design of a Pipe Crawling Robot. Proc. 13th World Congress, Int. Federation of Automatic Control, San Francisco, USA, 1996.Google Scholar
  23. Th. Roßmann. Eine Laufmachine für Rohre. Fortschrittbereichte VDI, Reihe 8, Nr. 732, VDI-Verlag, Düsseldorf, 1998.Google Scholar
  24. J.B. Sanders and V.T. Inman. The Major Determinants in Normal and Pathological Gait, J. Bone Jt. Surg., 35-A, pp. 543–559, 1953.Google Scholar
  25. J.J. E. Slotine and W. Li. Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersex, 1991.MATHGoogle Scholar
  26. H. J. Weidemann, Dynamik und Regelung von sechsbeinigen Robotern und natürlichen Hexapoden. Fortschrittberichte VDI, Reihe 8, Nr. 362, VDI-Verlag, Düsseldorf, 1993.Google Scholar
  27. K. Waldron et al. Force and Motion Management in Legged Locomotion. IEEE Journal of Robotics and Automation, RA-2, 1986.Google Scholar
  28. J. Yamaguchi, A. Takanishi, I. Kato. Development of a Biped Walking Robot Adapting to a Horizontally Uneven Surface, Proc. 1994 IEEE/RSJ International Conference on Intelligent Robots and Systems, Munich, Germany, pp. 1156–1163, 1994.Google Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Friedrich Pfeiffer
    • 1
  1. 1.Lehrstuhl für Angewandte MechanikTU-MünchenGarchingGermany

Personalised recommendations